KPR Institute of Engineering and Technology (Autonomous, NAAC "A") Avinashi Road, Arasur, Coimbatore. Great Place To Work® Certified MAR 2022 - MAR 2023 INDIA VI Semester – Open Electives Syllabi B.E. / B.Tech. Programme Regulations – 2021(Revised) Centre for Academic Courses #### **REGULATION 2021** # B.E. / B.Tech. Programme # VI Semester – OPEN ELECTIVES #### **SYLLABI** | | DEPARTME | NT OF ELECTRICAL AND ELECTRONICS ENGINEERING | |---|----------|---| | 1 | U21EEX05 | Battery Technology | | 2 | U21EEX08 | Energy Audit | | | DI | EPARTMENT OF INFORMATION TECHNOLOGY | | 1 | U21ITX05 | Social Media Security | | 2 | U21ITX06 | Enterprise Resource Planning | | | D | EPARTMENT OF MECHANICAL ENGINEERING | | 1 | U21MEX06 | Automotive Systems | | 2 | U21MEX07 | Low Cost Automation | | | DE | PARTMENT OF MECHATRONICS ENGINEERING | | 1 | U21MIX05 | Product Design and Development | | 2 | U21MIX06 | Introduction to Industrial Internet of Things | | 3 | U21MIX07 | Graphical System Design using LabVIEW | | | | SCIENCE & HUMANITIES | | 1 | U21MAX02 | Linear Programming Problems | | 2 | U21CYX03 | Instrumental Analysis and Methods | | 3 | U21CYX04 | Occupational Health and Safety | | | | GENERAL ENGINEERING | | 1 | U21GEX01 | Digital Engineering | | 2 | U21GEX05 | Industrial Process Automation and Artificial Intelligence | | | | FOREIGN LANGUAGE COURSES | | 1 | U21FLX01 | Essential Japanese for Engineers | | 2 | U21FLX02 | Essential Hindi for Engineers | | 3 | U21FLX03 | Essential German for Engineers | #### DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE #### SEMESTER VI | | | 1 | 1 | Cate | gory | OEC | :/ | |----------|-------------------------------|----|---|------|------|-----|----| | U21ADX05 | FOUNDATIONS OF DATA ANALYTICS | 10 | 1 | T | P | 1 | С | | | | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - To understand the basic R Programming Constructs and Visualization - To understand and apply Exploratory Data Analytics using Data Visualization - To understand and apply Inferential Statistics and Regression Models #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Describe the basics and fundamental data handling techniques in R (Understand) CO2: Use the various types of functions in R for data manipulation (Apply) CO3: Implement data cleaning and data visualization methods in R (Apply) CO4: Define various data types, data dimensions and Numerical measures (Understand) CO5: Describe data standardizing and error handling methods (Understand) #### CO-PO MAPPING: | POs | PO1 | PO2 | PO3 | PO4 | P05 | PO6 | P07 | P08 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |----------|---------|------|---------|--|-----|-------------------|-----|-----|-------------------|------|-----------------|------|------|------| | CO1 | 3 | 2 | 1 | | 1 | - | - | - | | - | - | - | | | | CO2 | 3 | 2 | 2 | 2 | 2 | 82 | - | | (1 5) | - | S ** | - | | | | CO3 | 3 | 2 | 2 | 2 | 2 | (9 5) | - | • | · | - | • | | | | | CO4 | 3 | 2 | 1 | 1 | 1 | | - | - | - | - | | - | | | | CO5 | 3 | 2 | 1 | 1 | 1 | | - | 170 | | - | 150 | - | | | | Correlat | ion lev | els: | 1: Slig | ght (Low) 2: Moderate (Medium) 3: Substantial (High) | | | | | |) | | | | | #### SYLLABUS: #### UNIT I GETTING DATA USING R 9 Introduction to R – Getting Data into R – Concatenating Data with C function – Combining Variables with the c, cbind, rbind functions – Vector Function – Matrix – Data frame – List – Importing Excel Data – Accessing Data from other Statistical Packages – Accessing the Database #### UNIT II FUNCTIONS IN R 9 Functions - The Attach Function - Exporting Data - The Tapply Function - The Supply and Lapply Function - The Summary and Table Function - Importing Data - CSV, Excel, Table, Xml, Json, Databases Conditional - Control flow - Loops - A Function with Multiple Arguments #### UNIT III DATA CLEANING AND VISUALIZATION 9 Cleaning Data - Exploring raw data: Missing values, Zeros and NAs - Separating - Uniting columns - R visualization packages: Lattice - ggplot2 - Plotly - Seaborn - Histogram - Box plot, Density Head of the Department Department of Artificial Intelligence and Data Science KPR Institute of Engineering and Technology plot, Scatter plots - Plot function - Pie chart, Bar and Strip chart, Cleveland dot plots - Reporting Data preparation - Labelling and reusing code chunks #### DATA TYPES, INSIGHTS AND INFERENCES Data types: Categorical, Binary, Ordinal, Nominal, Continuous, Discrete - Data dimensions: Univariate, Bivariate, Multivariate - Numerical measures: Central tendency, Mean, Median, Mode -Variability measure: Variance, Range, IQC, Standard deviation, Sum of squares - Squared deviations Absolute deviations – Identify outlier using Inter quartile range #### HANDLING ERROR **UNIT V** Data standardizing: Z score, Negative Z score - Continuous distributions - Compute proportions -Normalized distribution using - Ztable - Probability distributions: Probability of mean, Location of mean distribution, Sampling distributions - Standard error - Standard deviation of sampling distribution - Ratio of sampling distribution - Central Limit Theorem R - Simple regression analysis - Multiple regression ANNOVA model - Parametric test - Non parametric test #### Contact Periods: Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** Roger D. Peng, "R Programming for Data Science", 1st Edition, Lean Publishing, 2014 Hadley Wickham, "R for Data Science: Import, Tidy, Transform, Visualize, and Model Data", 1st Edition, O'Reilly Media Publisher, ISBN: 9781491910399, 2017 #### REFERENCES: - Brett Lantz, "Machine Learning with R", 3rd Edition, ISBN: 9781788295864, 2019 - Kaelen Medeiros, "R Programming Fundamentals", ISBN: 9781789612998, 2018 Vitor Binanchi Lanzetta, "Hands-On Data Science with R", ISBN: 9781789139402, 2018 - Jared P. Lander, "R for Everyone: Advanced Analytics and Graphics", 2nd Edition, Pearson Education Publisher, ISBN: 9789386873521, 2018 - https://www.datacamp.com/tracks/r-programming - 6. https://www.tutorialspoint.com/r/index.htm - 7. https://www.datamentor.io/r-programming/ #### **EVALUATION PATTERN:** | | Contin | uous Internal Ass | sessments | | | |---|-----------------|---|-----------------|-------------------------------|------------------------------| | Assessment I
(100 Marks) | | Assessme
(100 Mari | 50.000.000 | | | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | Total Internal
Assessments | End Semester
Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | To | tal | 40 | 60 | | | | | | | 10 | 0 | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course. **Head of the Department** Department of Artificial Intelligence and Data Science KPR Institute of Engineering and Technology #### DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE #### SEMESTER VI | | | (| Cate | gory | ÓE | 3 | |----------|-----------------------------|---|------|------|----|---| | U21ADX08 | NATURAL LANGUAGE PROCESSING | L | L | С | | | | | | 3 | 0 | 0 | 0 | 3 | ## PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - · To classify the text and information extraction - To acquire knowledge in basics of dialog system and learning algorithms - To apply the natural language processing in various real-world applications #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Describe the fundamentals of Natural Language Processing (Understand) CO2: Classify the text with different models (Understand) CO3: Illustrate the entity recognition and linking (Understand) CO4: Interpret the components of a dialog System (Understand) CO5: Illustrate various applications through Natural Language Processing (Apply) #### CO-PO MAPPING: | POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------------------------------|-----|-----|-----|-----|-----|------|--------|--------|-------|------|--------|---------|---------|------| | CO1 | 3 | 1 | 1 | 1 | - | - | - | - | | - | 2 | 2 | | | | CO2 | 3 | 2 | 1 | 1 | - | - | - | - | - | _ | - | 2 | | | | CO3 | 3 | 2 | 1 | 1 | - | - | -> | - | - | - | - | 2 | | | | CO4 | 3 | 2 | 1 | 1 | - | • | - | | | - | - | 2 | | | | CO5 | 3 | 3 | 3 | 2 | - | | - | - | | • | - | 2 | | | | Correlation levels: 1: Slight (Low) | | | | | w) | 2: M | oderat | e (Med | dium) | | 3: Sub | stantia | l (High |) | #### SYLLABUS: #### UNIT I INTRODUCTION 9 NLP: An overview – Approaches – Data acquisition – Text extraction: Unicode normalization, Spelling correction – Pre-processing: Preliminaries, Frequent steps – Feature engineering: ML, DL Pipeline – Modeling – Evaluation – Post modeling phases #### UNIT II TEXT REPRESENTATION AND CLASSIFICATION 9 Vector space models — Vectorization approaches — Distributed representation — Universal representations — Building text classification — Classifiers: Naïve Bayes, Logistic regression — SVM — Neural embeddings — Deep learning — Interpreting models Head of the Department Department of Artificial Intelligence and Data Science KPR Institute of Engineering and Technology #### INFORMATION EXTRACTION LINIT III Information extraction tasks - Key phrase extraction: Implementation - Named entity recognition -Named entity disambiguation and linking: Azure API - Relationship extraction: Watson API, Advanced IE tasks #### **UNIT IV** NLP
ESSENTIALS Chatbots: Taxonomy - Dialog systems - Components of a dialog system - Dialog pipelines - Rasa NLU - Information retrieval -Topic modeling - Text summarization - Recommender system -Machine translation #### **APPLICATIONS UNIT V** 9 Social Media: NLP for social data, Memes and Fake news - E-Commerce and Retail: Search, Building, Review analysis -- Healthcare, Speech processing - Sentimental analysis #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** 1. Sowmya Vajjala, Majumder, Anuj Gupta, Harshit Surana, "Practical Natural Language Processing: A Comprehensive Guide to building Real-World NLP systems", 1st edition, O'Reilly Media, 2020 2. Aman Kedia and Mayank Rasu, "Hands-On Python Natural Language Processing", 1st edition, Packt Publishing Ltd., 2020 #### REFERENCES: 1. Nitin Indurkhya, Fred J Damerau, "Handbook of Natural Language Process", 2nd Edition, CRC Press, 2010 Bing Liu, "Sentiment Analysis and Opinion Mining", 1st edition, Morgan & Claypool Publishers, 2012 3. Dan Jurafsky and James H. Martin, "Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", 3rd edition, Pearson, 2023 #### **EVALUATION PATTERN:** | | Contin | uous Internal Ass | sessments | | | |---|-----------------|---|-----------------|-------------------------------|--------------| | Assessme
(100 Mark | | Assessme
(100 Mari | | | End Semester | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | Total Internal
Assessments | Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | То | tal | 40 | 60 | | | | | | 10 | 0 | | ^{*}Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course. Head of the Department Department of Artificial Intelligence and Data Science KPR Institute of Engineering and Technology ### DEPARTMENT OF BIOMEDICAL ENGINEERING #### SEMESTER VI | | | | Cate | gory: | OE | C | |----------|---------------------|---|------|-------|--------|---| | U21BMX05 | MEDICAL INFORMATICS | L | T | P | J | С | | | | 3 | 0 | 0 | J
0 | 3 | #### PRE-REQUISITES: Nil #### **COURSE OBJECTIVES:** - To introduce the basic concepts in biomedical informatics and its applications in electronic medical record system and medical standards - To learn about healthcare informatics in the medical field and to apply the standards in proper health care delivery - To teach the various medical informatics tools and explore the databases available in NCBI #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Infer the overview of medical informatics (Understand) CO2: Interpret the basics of healthcare informatics and the resources in the field (Understand) CO3: Explore and apply the various medical informatics tools and databases available in NCBI (Apply) CO4: Illustrate the clinical decision support systems (Understand) CO5: Comprehend the applications of an electronic medical record system (Apply) #### CO-PO MAPPING: | POs | PO1 | PO2 | PO3 | PO4 | P05 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|-------------------------------------|-----|-----|-----|-----|----------------------|-----|-----|-----|------|--------|---------|----------|------| | CO1 | 3 | 2 | 1 | - | - | - | - | 2 | - | - | - | | _ == | | | CO2 | 3 | 2 | 1 | - | - | - | - | 3 | - | - | - | - | | | | соз | 3 | 2 | 1 | - | - | - | 1 | 3 | - | - | - | - | | | | CO4 | 3 | 2 | 2 | - | - | - | 2 | 3 | 726 | 1 | 2: | - | | | | CO5 | 3 | - 2 | 1 | - | - | - | 2 | 2 | - | 1 | - | | | -11 | | Correlation | Correlation levels: 1: Slight (Low) | | | | | 2: Moderate (Medium) | | | | | 3: Sub | stantia | al (High | 1) | ### SYLLABUS: #### UNIT I OVERVIEW OF MEDICAL INFORMATICS 9 Introduction – Biomedical Data - their Acquisition, Storage, and Use – Computer Architectures for Health Care and Biomedicine – Medical informatics – Bioinformatics – Health informatics – Structure of medical informatics – Hospital information system – Characteristics – Functional online and offline modules HoD - BIOMEDICAL ENGINEERING KPR INSTITUTE OF ENGINEERING AND TECHNOLOGY ARASUR COIMBATORE-641 407 Academic Courses #### UNIT II MEDICAL STANDARDS AND ELECTRONIC PATIENT RECORD 9 Evolution of medical standards – HL7 – DICOM – PACS – Electronic patient records – Healthcare standard organizations – JCAHO – JCIA – Steganography – Virtual hospital #### UNIT III MEDICAL DATA STORAGE AND AUTOMATION a Medical data formats – Signal – Image and video formats – Representation of data – Data modeling techniques – Relational hierarchical and network approach – Normalization techniques for data handling – Plug-in data acquisition and control boards #### UNIT IV HEALTH INFORMATICS 9 Bioinformatics databases – Bio information technologies – Semantic web and bioinformatics – Genome project – Clinical informatics – Nursing informatics – Public health informatics – Education and training #### UNIT V RECENT TRENDS IN MEDICAL INFORMATICS 9 Medical expert systems – Virtual reality applications in medicine – Virtual environment – Surgical simulation – Radiation therapy and planning – Telemedicine – Virtual hospitals – Smart medical homes – Personalized e-health services – Biometrics – GRID and cloud computing in medicine #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** - Aboul Ella Hassanien, Roheet Bhatnagar, Václav Snášel and Mahmoud Yasin Shams, "Medical Informatics and Bioimaging Using Artificial Intelligence: Challenges, Issues, Innovations and Recent Developments", 1st edition, Springer, 2022 - 2. Yi Ping Phoebe Chen, "Bioinformatics Technologies", 1st edition, Springer, 2014 - 3. Godbole.A.S, Kahate.A, "Web Technologies TCP/IP to Internet Application Architectures", 1st edition, TMH Publication, 2007 ## REFERENCES: - Orpita Bosu, Simminder Kaur Thukral, "Bioinformatics Databases, Tools and Algorithms", 1st edition, Oxford University press, 2007 - 2. Mohan Bansal, "Medical informatics", 1st edition, Tata McGraw Hill Publishing Ltd, 2003 ## **EVALUATION PATTERN:** | | Contin | uous Internal Ass | sessments | | | |---|-----------------|---|-----------------|-------------------------------|------------------------------| | Assessment I
(100 Marks) | | Assessme
(100 Mari | 50 E 100 | | | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual Assignment / Case Study / Seminar / Project / MCQ | Written
Test | Total Internal
Assessments | End Semester
Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | To | otal | 40 | 60 | | | | | | 10 | 0 | | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course. HOD - BIOMEDICAL ENGINEERING KPR INSTITUTE OF ENGINEERING AND TECHNOLOGY ADARID COMPATORE 241 407 | | | | Cate | gory | /: OE | C | |----------|--------------|---|------|------|-------|---| | U21BMX06 | TELEMEDICINE | L | T | P | J | С | | | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - To learn the principles of telemedicine - To understand the concept of PACS - · To apply tele medicine in the different fields of hospital ## COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Explain the concept of telemedicine and its scope (Understand) CO2: Describe the different communication technologies in telemedicine (Understand) CO3: Illustrate the significance of mobile telemedicine (Understand) CO4: Outline the concept of PACS and its architecture (Apply) CO5: Identify the applications of telemedicine in healthcare (Apply) #### CO-PO MAPPING: | POs | PO1 | PO2 | РО3 | P04 | PO5 | P06 | P07 | P08 | P09 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------------------------------|-----|-----|-----|-----|-----|--|-----|-----|-----|------|------|------|------|------| | CO1 | 3 | 1 | | - | - | 2 | | | 4 | | | - | | | | CO2 | 3 | 1 | - | | - | - | | | | - | - | - | | | | CO3 | 3 | 1 | 2 | - | | 2 | - | - | | | :=: | - | | | | CO4 | 3 | 1 | | - | - | | | - | | - | | | | | | CO5 | 3 | 1 | • | - | - | 2 | | - | - | | | - | | | | Correlation levels: 1: Slight (Low) | | | | | w) | 2: Moderate (Medium) 3: Substantial (High) | | | | | | |) | | #### SYLLABUS: ## UNIT I FUNDAMENTALS OF TELEMEDICINE 9 Introduction – Definition of Telemedicine, Telehealth and Telecare – Origin and Development of Telemedicine – Future of Telemedicine – Types of Telemedicine – Teleconsultation, Tele-education, Telemonitoring, Telesurgery – Patients and Carers – Benefits and Limitations of Telemedicine # UNIT II TECHNOLOGY OF TELEMEDICINE SYSTEM Types of telemedicine information – Compression – Frame rate and bandwidth – Telecommunication standards – Components of telecommunication system – Public Switched Telephone Network (PSTN) – Satellite – Wireless technology – Store and forward operation – Real time telemedicine HOD - BIOMEDICAL ENGINEERING KPR INSTITUTE OF ENGINEERING AND TECHNOLOGY #### **UNIT III** MOBILE TELEMEDICINE Tele radiology - Tele pathology - Multimedia databases - Compression methods - Interactive control of color - Medical information storage
and management for telemedicine - Hospital information system - Pharmaceutical information system #### PICTURE ARCHIVING AND COMMUNICATION SYSTEM, HL7 AND DICOM **UNIT IV** Picture Archiving and Communication System (PACS) Components - PACS Infrastructure Design Concept - PACS Workflow - PACS Architecture - PACS Server and archive - PACS and Teleradiology - Industrial standards: HL7 and DICOM #### APPLICATION OF TELEMEDICINE **UNIT V** Robotic surgery - Telesurgery - Telecardiology - Telemedicine in neurosciences - Electronic documentation - E-health services - Security and interoperability - Business aspects - Project planning - Usage of telemedicine #### Contact Periods: Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** 1. Rifat Latifi, Charles R. Doarn, Ronald C. Merrell, "Telemedicine, Telehealth and Telepresence: Principles, Strategies, Applications, and New Directions", 1st edition, Springer, 2021 2. Khandpur R S, "TELEMEDICINE - Technology and Applications II", 1st edition, PHI Learning Pvt Ltd., New Delhi, 2017 3. HK Huang, "PACS and Imaging Informatics: Basic Principles and Applications II", 1st edition, Wiley, New Jersey, 2010 #### REFERENCES: - 1. Olga Ferrer Roca, Marcelo Sosa Iudicissa, "Handbook of Telemedicine", 1st edition, IOS Press, Netherland, 2002 - 2. Norris A C, "Essentials of Telemedicine and Telecare II", 1st edition, John Wiley, New York, 2002 #### **EVALUATION PATTERN:** | | Continuous Internal Assessments | | | | | | | | | |---|---------------------------------|---|-----------------|-------------------------------|------------------------------|--|--|--|--| | Assessment I
(100 Marks) | | Assessme
(100 Mark | Charles Carrier | | | | | | | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual Assignment / Case Study / Seminar / Project / MCQ | Written
Test | Total Internal
Assessments | End Semester
Examinations | | | | | | 40 | 60 | 40 | 60 | 200 | 100 | | | | | | | ₽ | | 40 | 60 | | | | | | | | Тс | otal | 100 | | | | | | | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course. > HOD - BIOMEDICAL ENGINEERING KPR INSTITUTE OF ENGINEERING AND TECHNOLOGY ARASUR COMBATORE-641 407 Centre I... Courses #### DEPARTMENT OF CHEMICAL ENGINEERING #### SEMESTER VI | | | Category: OEC | | | | | | | | |----------|-----------------------|---------------|---|---|-----|---|--|--|--| | U21CHX05 | INDUSTRIAL MANAGEMENT | L | Т | Р | J | С | | | | | | | 3 | 0 | 0 | . 0 | 3 | | | | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - To understand the strategic planning and effective supply chain - · To know about the organizational behavior and group dynamics - To understand the concept of SWOT analysis #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Gain knowledge on the basic management principles to become a professional (Understand) CO2: Understand the modern concepts of management (Understand) CO3: Understand about the organizational structures in detail (Understand) CO4: Implement the performance appraisal in their working system (Understand) CO5: Manage human behavior and leadership qualities (Understand) #### CO-PO MAPPING: | POs | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|--------|-----|---------|---------|-----|-------|--------|--------|-------|------|--------|--------------|---------|------| | CO1 | 3 | 2 | + | - | 2 | - | - | - | - | 1 | - | | 12.00 | | | CO2 | 3 | 2 | - | | 2 | | - | - | - | 1 | - | 140 | - | | | СОЗ | 3 | 2 | | - | 2 | 2.0 | - | | 112 | 1 | - | <u> 18</u> 9 | | | | CO4 | 3 | 2 | | | 2 | - | | - | | 1 | - | 7.0 | | | | CO5 | 3 | 2 | - | - | 2 | - | - | - | | 1 | - | - | | | | Correlation | levels | 3: | 1: Slig | ght (Lo | w) | 2: Mo | oderat | e (Med | dium) | | 3: Sub | stantia | l (High |) | ## SYLLABUS: #### UNIT I INTRODUCTION TO MANAGEMENT 9 Management – Definition – Functions – Evolution of modern management – Scientific management – Joint stock companies – Co-operative enterprises – Public sector undertakings – Corporate frame work – Shareholders – Board of directors – Committees – Chief Executives – Trade union # UNIT II FUNCTIONS OF MANAGEMENT 9 Planning – Nature and purpose – Objectives – Strategies – Policies and Planning premises – Decision making – Organizing – Organizational culture – Staffing – Selection and training – Placement – Performance appraisal – Career strategy – Organizational development – Leading – Managing human factor – Leadership – Communication – Controlling ## UNIT III ORGANIZATIONAL BEHAVIOUR 9 Definition – Organization – Managerial role and Functions – Organizational approaches – Individual behavior – Causes – Environmental effect – Behavior and performance – Job satisfaction – Learning and behavior – Learning curves – Work design and approaches #### UNIT IV GROUP DYNAMICS 9 Group behavior – Groups – Contributing factors – Group norms – Communication – Process – Barriers to communication – Effective communication – Organization centralization and decentralization – Formal and Informal – Organizational structures – Organizational change and development – Change process – Resistance to change – Culture and Ethics ### UNIT V MODERN CONCEPTS 9 Management by Objectives (MBO) – Management by Exception (MBE) – Strategic Management – Planning for future direction – SWOT Analysis – Information technology in management – Decisions support system – Activity based management (ABM) #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total 45 Periods #### **TEXT BOOKS:** - Herald Knotts and Heinz Weihrich, "Essentials of Management", 11th edition, McGraw-Hill Education, New Delhi, 2012 - 2. Stephen P. Robbins, Timothy A. Judge, Neharika Vohra, "Organization Behaviour", 16th edition, Pearson Education Inc, 2016 #### REFERENCES: - James A. F. Stoner and Edward Freeman R, "Management", 5th edition, Prentice Hall of India, New Delhi, 1994 - Joseph L. Massie, "Essentials of Management", 4th edition, Pearson India, 2015 - 3. Tripathi P.C and Reddy P. N, "Principles on Management", 4th edition, McGraw-Hill Education, New Delhi, 2008 ## **EVALUATION PATTERN:** | | Contin | uous Internal As | sessments | | | |--|-----------------|--|-----------------|-------------------------------|------------------------------| | Assessment I
(100 Marks) | | Assessme
(100 Mari | STATISTICS. | * | | | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Written
Test | Total Internal
Assessments | End Semester
Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | То | tal | | 40 | 60 | | | | | | 10 | 0 | ^{*}Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course. 20/01/24 Asplum #### SEMESTER VI | | | *Coimb | Cate | gory: | OEC | ; | |------------|---------------------|--------|------|-------|-----|---| | U21CHX06 | MEMBRANE TECHNOLOGY | L | T | Р | J | С | | OZ TOTIKOS | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - To know about applications of reverse osmosis, ultra filtration and microfiltration. - To know about applications of gas separation and pre evaporation. - To know about ion exchange, electro dialysis and medical applications ## COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Understand about an overview of membrane technology (Understand) CO2: Know about various membrane technologies and their applications (Understand) CO3: Interpret the applications of membrane technologies with the industry (Understand) CO4: Know about various types of membranes used in industry (Understand) CO5: Serve the water purification industry (Apply) #### CO-PO MAPPING: | | 1000 | | | | | | | | | | | | | | |-------------|---------|-----|--------|---------|-----|------|-------|--------|-------|------|----------|----------|----------|------| | POs
COs | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | CO1 | 2 | - | - | - | - | 3 | 3 | - | - | - | - | | | | | CO2 | 2 | 38 | 1 | - | - | 3 | 3 | • | - | - | - | - | | | | CO3 | 2 | 16 | ¥ | 2 | - | 3 | 3 | | - | • | <u>#</u> | 2] | | | | CO4 | 2 | - | - | E | | 3 | 3 | - | - | - | | - | | | | CO5 | 2 | - | - | - | - | 3 | 3 | - | - | - | - | - | | | | CO | 2 | -/ | | | | 3 | 3 | | | | - | æx. | | | | Correlation | n level | s: | 1: Sli | ght (Lo | ow) | 2: M | odera | te (Me | dium) | | 3: Su | bstantia | l (High) | | #### SYLLABUS: # UNIT I INTRODUCTION TO MEMBRANE SCIENCE AND TECHNOLOGY 9 Introduction, Historical Development of Membranes, Types of Membranes, Membrane Processes. Solution-diffusion Model, Structure—Permeability Relationships in Solution-diffusion Membranes, Pore-flow Membranes. Isotropic Membranes, Anisotropic Membranes, Metal Membranes and Ceramic Membranes, Liquid Membranes, Hollow Fiber Membranes, Membrane Modules. Boundary Layer Film Model, Determination of the Peclet Number. #### UNIT II REVERSE OSMOSIS 9 Membranes and Materials, Reverse Osmosis Membrane Categories, Membrane Selectivity, Membrane Modules, Membrane Fouling Control, Membrane Cleaning, Applications. #### UNIT III
ULTRAFILTRATION AND MICROFILTRATION a Characterization of Ultrafiltration Membranes, Concentration Polarization and Membrane Fouling, Membrane Cleaning, Membranes and Modules, Applications. Microfiltration and its Applications. ### UNIT IV GAS SEPARATION AND PERVAPORATION 9 Gas separation: Membrane Materials and Structure, Membrane Modules, Applications. Pervaporation: Membrane Materials and Modules, Applications. # UNIT V ION EXCHANGE, ELECTRODIALYSIS AND MEDICAL APPLICATIONS 9 Chemistry of Ion Exchange Membranes, Transport in Electrodialysis Membranes, Applications. Medical applications: Hemodialysis, Blood Oxygenators, Controlled Drug Deliver. #### Contact Periods: Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods #### **TEXT BOOKS:** Total 45 Periods - Membrane Technology and Applications, 2nd Ed., by Richard W. Baker, John Wiley & Sons, 2000. - 2. Water Treatment Membrane Processes, by American Water Works Association Research Foundation, McGraw-Hill, 1996. #### REFERENCES: - Microltration and Ultraltration, by Leos J. Zeeman and Andrew L. Zydney, Marcel Dekker, Inc., 1996. - 2. Sustainable Water for the Future: Water Recycling versus Desalination, eds.: Isable Escobar, Andrea Schafer, Elsevior, 2010. - Basic Principles of Membrane Technology, 2nd Ed., by Marcel Mulder, Kluwer Academic Publishers, 2000 ### **EVALUATION PATTERN:** | | Contin | uous Internal As | sessments | | | |--|-----------------|--|-----------------|-------------------------------|------------------------------| | Assessment I
(100 Marks) | | Assessme
(100 Mari | | | | | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Written
Test | Total Internal
Assessments | End Semester
Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | То | tal | | 40 | 60 | | | | | | 100 | 0 | ^{*}Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course. Dr & Chopbelly # DEPARTMENT OF CIVIL ENGINEERING SEMESTER VI | | 21CEX05 ENVIRONMENT & AGRICULTURE | 1 | Cate | gory | OE | С | |--------------|-----------------------------------|---|------|------|----|---| | U21CEX05 | | L | T | P | J | С | | Trades In B. | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: Nil ### **COURSE OBJECTIVES:** - To emphasize the importance of environmental and agriculture on changing global scenario and emerging issues connected to it - To learn the various instrumental methods of monitoring the quality of air, water and soil - To understand the role of agricultural and irrigation engineers in relation to various crop production practices #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Summarize various biotic and abiotic environmental transformation processes of pollutants (Understand) CO2: Understand the various aspects of ecology (Understand) CO3: Identify air pollution problems and interpret air quality data on chemical characteristics (Understand) CO4: Relate plant growth regulators and environmental stresses (Understand) CO5: Choose right crop for the given soil conditions and climate (Understand) #### CO-PO MAPPING: | POs | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PS01 | PSO2 | |-------------|-------|-----|--------|---------|-----|------|--------|-------|-------|------|--------|---------|---------|------| | CO1 | 1 | - | - | - | - | 1 | - | 1 | - | - | 2 | - | | | | CO2 | - | | - | - | - | 1 | - | 1 | 2 | - | 2 | * | | | | CO3 | 1 | 2 | 2 | 3 | - | 1 | 3 | 1 | 2 | - | 2 | - | | | | CO4 | 1 | 2 | 2 | 3 | - | 1 | 3 | 1 | 2 | - | 2 | - | | | | CO5 | 1 | 2 | 2 | * | 2 | 1 | - | 1 | 2 | 3 | 2 | - | | | | Correlation | level | s: | 1: Sli | ght (Lo | ow) | 2: M | oderat | e (Me | dium) | | 3: Sub | stantia | l (High |) | #### SYLLABUS: #### UNIT I GENERAL CONSIDERATION 9 Basis concepts – Biotic and Abiotic environment – Adverse effects of environment pollution – Control strategies – Environmental Act and regulation – International concern for environment – Environmental protection laws in India #### UNIT II ECOLOGY 9 Objectives of ecology study — Classification of various aspects of ecology-Balanced ecology — Habitat ecology-Function of concepts of ecology — Food chain — Food web- Basics of species — Bio diversity and wildlife conservation — Ecosystem Hend of the Department Department of Civil Engineering KPR Institute of Engineering & technology Arasur, Colimbia as \$1117 #### **ENVIRONMENTAL POLLUTION** UNIT III Classification - Air pollution - Domestic and industrial - Solid waste, biomedical waste - Agricultural pollution - Thermal pollution - Treatment and remedial measures #### AGRICULTURE AND CROP PRODUCTION UNIT IV Introduction to agriculture and its crop production sub-sectors - Field crop production and horticulture - Factors affecting crop growth and production - Genetic (internal) and environmental (external) factors - Crop management through environmental modification and adaptation of crops to the existing environment through crop cultural practices #### CROP SELECTION AND ESTABLISHMENT **UNIT V** Regional and seasonal selection of crops - Systems of crop production - Competition among crop plants - Spacing and arrangement of crop plants - Field preparation for crops including systems of tillage - Establishment of an adequate crop stand and ground cover, including selection and treatment of seed, and nursery growing #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project - Periods Total: 45 Periods ## **TEXT BOOKS:** Kaushik, C.P, S.S. Bhavikatti, Anubha Kaushik, "Basic Civil and Environmental Engineering", New age international publishers. New Delhi, 8th Edition, 2010. Howard S Peavy, Donald R Rowe, George Tchobanoglous, "Environmental Engineering", New York: McGraw-Hill, 4th Edition, 1985. Mahua, Basu and Xavier Savarimuthu SJ, "Fundamentals of Environmental Studies", 3rd Edition, 1970. #### REFERENCES: Kiran Bisht Nidhi Gauba Dhawan, "Environmental Studies Challenge and Solutions", Dream tech Press, 5th Edition, 2001. R.J. Ranjit Daniels and Jagdish Krishnaswamy "Environmental Studies", Wiley publications, 1st Edition, 2005. Dr. P.D. Sharma "Ecology and Environment". Rastogi Publications, 6th Edition, 2000. # **EVALUATION PATTERN:** | | Contin | uous Internal Ass | sessments | | | | |---|-----------------|---|--|-------------------------------|--------------|--| | Assessment I
(100 Marks) | | Assessme
(100 Mark | Company of the Compan | 7 .6.11.6 | End Semester | | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual Assignment / Case Study / Seminar / Project / MCQ | Written
Test | Total Internal
Assessments | Examinations | | | 40 | 60 | 40 | 60 | 200 | 100 | | | | | | | 40 | 60 | | | | То | otal | | 10 | 0 | | ^{*}Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Designer can choose any one / two components based on the nature of the course. Not the Department Department of Coll. Engineering KPR Institute of Englaces up & Technology Arzsur, Coimbalure-041407 #### B.E. / B.Tech. - OE - R2021 - CBCS Centre io Academ. Courses #### PRE-REQUISITES: Nil #### **COURSE OBJECTIVES:** - To understand the scenario of e-waste - To demonstrate the recent technologies, in handling of the
e-wastes - To explain the scope of waste management audits #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Outline the global scenario of e-waste (Understand) CO2: Infer on laws and legislation for e-waste management (Understand) CO3: Demonstrate the significance and benefits of conducting e-waste management audits (Understand) CO4: Illustrate the disposal techniques of e-waste (Understand) CO5: Summarize the integrated e-waste management (Understand) #### CO-PO MAPPING: | POs
COs | PO1 | PO2 | PO3 | P04 | PO5 | P06 | P07 | P08 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|--------|-----|--------|----------------|-----|------|--------|--------|-------------|------|--------|---------|---------|------| | CO1 | 2 | 1 | - | - | - | 3 | 3 | 2 | (+) | - | -1 | - | | | | CO2 | 2 | 1 | | (- | | 3 | 3 | 2 | (-) | - | 1 | | | | | CO3 | 2 | 1 | - | - | - | 3 | 3 | 2 | * | - | 1 | - | 3911 | | | CO4 | 2 | 1 | - | : - | - | 3 | 3 | 2 | | - | 1 | - | | | | CO5 | 2 | 1 | - | | - | 3 | 3 | 2 | | - | 1 | - | (a) | | | Correlation | levels | s: | 1: Sli | ght (Lo | w) | 2: M | oderat | e (Med | dium) | | 3: Sub | stantia | l (High |) | #### SYLLABUS: ### UNIT I INTRODUCTION 9 E-Waste – Definition, Types of waste, E waste hazardous properties – Indian and global scenario of e-Waste – Growth of Electrical and Electronics industry in India – E-waste generation in India, Composition of e-waste, Possible hazardous substances present in e-waste – Occupational, Environmental and Health implications. #### UNIT II LAWS AND LEGISLATION 9 Regulatory regime for e-waste in India, hazardous waste (Management and Handling) rules — E-waste management rules — Regulatory compliance including roles and responsibility of different stakeholders — producer, manufacturer, consumer etc., — Proposed reduction in the use of hazardous substances (RoHS), Extended producer responsibility (EPR). Depuriment of the Capacient of Engineering KPR Institute of Lagrace agree Technology Arasur, Colintuities-041407 #### SCOPE OF E-WASTE MANAGEMENT AUDITS **UNIT III** Essentials for E-Waste Disposal audit - Essential disposal steps for these e-waste items - Case studies - Auditing exercises, Audited site visits and demonstrations, Audits groundwork, checklist preparation, Practical auditing and auditing techniques - Audit conformity and non-conformity report preparation, Action Plan and Suggestions for Waste Reduction in the Organization. #### **END-OF-LIFE TECHNIQUES UNIT IV** Historic methods of waste disposal - Dumping, burning, landfill - Recycling and recovery technologies - Sorting, crushing, separation - Life cycle assessment of a product - Introduction Case study – Optimal planning for computer waste ## INTEGRATED E-WASTE MANAGEMENT Emerging recycling and recovery technologies - Principles for the Responsible and Sustainable Handling of Electronic Waste - Sustainable Technology for the Eco-Friendly Treatment of Electronic Waste - Guidelines for establishment of integrated e-waste recycling and treatment facility - Case studies and unique initiatives around the world. #### Contact Periods: Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** 1. Johri R., "E-waste: implications, regulations, and management in India and current global best practices", TERI Press, 2nd Edition, New Delhi, 2008. 2. Hester R.E., and Harrison R.M, "Electronic Waste Management" RSC Publishing, 4th Edition, 2009 3. Gnanamangai, B. M., Murugananth, G. and Rajalakshmi, S, "A Manual on Environment Management Audits to Educational Institutions and Industrial Sectors", Laser Park Publishing House, Coimbatore, Tamil Nadu, India, 1st Edition, 2021. #### REFERENCES: 1. Fowler B, "Electronic Waste (Toxicology and Public Health Issues)", Elsevier publications, 1st 2. Rajalakshmi, S., Kavitha, G. and Vinoth Kumar, D., "Energy and Environment Management Audits", AkiNik Publishing, New Delhi, India, 2nd Edition, 2021. 3. Pramanik, A.K., "Environmental Audit and Indian Scenario", Environmental Accounting and Reporting, Deep and Deep Publications, New Delhi, India, 6th Edition, 2013. #### **EVALUATION PATTERN:** | | Contin | uous Internal Ass | sessments | | | | |---|-----------------|---|-----------------|-------------------------------|--------------|--| | Assessment I
(100 Marks) | | Assessme
(100 Mark | | | End Semester | | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | Total Internal
Assessments | Examinations | | | 40 | 60 | 40 | 60 | 200 | 100 | | | 19, | | | | 40 | 60 | | | | То | otal | | 10 | 0 | | ^{*}Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Designer can choose any one / two components based on the nature of the course. Danet merd Head o Department of the same agincering KPR Institute of Law seering & Technology Arasur, Combatore-641407 B.E. / B.Tech. - OE - R2021 - CBCS # DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SEMESTER VI | U21CSX05 | | Category: OEC | | | | | | | |----------|-----------------------|---------------|---|---|---|---|--|--| | | USER INTERFACE DESIGN | L | Т | P | J | С | | | | A Marie | | 3 | 0 | 0 | 0 | 3 | | | ### PRE-REQUISITES: Nil #### **COURSE OBJECTIVES:** - To explore the significance of user interface design in software systems - To gain proficiency in the user interface design process - To develop Skills in designing system menus and navigation schemes #### COURSE OUTCOMES: ## Upon completion of the course, the student will be able to CO1: Explain the basics of User Interface (Understand) CO2: Discuss the process of user interface design and business requirements (Understand) CO3: Utilize various menu and navigation methods for effective user interface design (Apply) CO4: Incorporate windows and its operations in interface design (Apply) CO5: Design user interface using screen based controls (Apply) #### **CO-PO MAPPING** | Correlation | levels | S: | 1: Slig | ght (Lo | w) | 2: Mo | oderat | e (Med | dium) | | 3: Sub | stantia | l (High |) | |-------------|--------|-----|---------|---------|-----|-------|--------|--------|-------|------|--------|---------|---------|------| | CO5 | 3 | 2 | 2 | 2 | * | = | - | - | | • | | 2 | | | | CO4 | 3 | 2 | 2 | 2 | | • | | • | 1 | - | | 2 | | | | СОЗ | 3 | 2 | 2 | 2 | | - | - | • | * | • | • | 2 | | | | CO2 | 2 | 1 | 1 | 1 | • | • | - | • | • | • | - | 1 | | | | CO1 | 2 | 1 | 1 | 1 | - | - | - | • | • | | • | 1 | | | | POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | #### SYLLABUS: ## UNIT I THE USER INTERFACE 9 The User Interface-Introduction — Overview — The importance of user interface — Defining the user interface — The importance of Good design — Characteristics of graphical and web user interfaces — Principles of user interface design #### UNIT II THE USER INTERFACE DESIGN PROCESS 9 The User Interface Design process - Obstacles - Usability - Human characteristics in Design - Human Interaction speeds - Business functions - Business definition and requirement analysis - Basic business functions - Design standards # UNIT III SYSTEM MENUS AND NAVIGATION SCHEMES 5 System menus and navigation schemes – Structures of menus – Functions of menus – Contents of menus – Formatting of menus – Phrasing the menu – selecting menu choices – Navigating menus – Kinds of graphical menus #### UNIT IV WINDOWS 9 Windows - Characteristics - Components of window - Window presentation styles - Types of window - Window management, organizing window functions - Window operations - Web systems - Characteristics of device based controls #### UNIT V SCREEN BASED CONTROLS 9 Screen based controls - Operable control - Text control - Selection control, Custom control, Presentation control, Windows Tests-prototypes, kinds of tests #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** Wilbent. O. Galitz, "The Essential Guide to User Interface Design", John Wiley& Sons, Third Edition, 2007 Ben Shneiderman, Catherine Plaisant, Maxine S. Cohen, Steven M. Jacobs, Niklas Elmqvist, "Designing the User Interface Strategies for Effective Human-computer Interaction", Pearson Publisher 2017 #### REFERENCES: Larry E Wood, "User Interface Design: Bridging the Gap from 'User Requirements to design", CRC Press, 2018 2. Alan Cooper, "The Essential of User Interface Design", Wiley- Dream Tech Ltd., 2002 #### **EVALUATION PATTERN:** | | Contin | uous Internal Ass | sessments | | | |--|-----------------|--|--|-----|--------------| | Assessment I
(100 Marks) | | Assessme
(100 Mark | | | End Semester | | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Assignment / Case Study / Seminar / Mini Written Test | | Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | То | tal | 40 | 60 | | | | | | | 10 | 0 | ^{*}Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course. Head of the Department Department of Computer Science and Engineering KPR Institute of Engineering and Technology Coimbators - 644 467 #
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AIML) #### SEMESTER VI | | | 1 | Sate | jory: | OE | > | |----------|------------------|---|------|-------|----|---| | U21AMX04 | AI IN HEALTHCARE | L | Т | P | J | С | | 100 | | 3 | o | 0 | 0 | 3 | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - To provide students with a comprehensive understanding of AI and Machine Learning in Healthcare - To familiarize students with the tools and techniques used in healthcare data analysis and analytics - To teach students the principles and techniques of machine learning models used in healthcare - . To provide students with an understanding of the real-time applications of AI in healthcare - . To equip students with knowledge of the challenges and ethical considerations in Al in healthcare #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Understand the principles and applications of AI in Healthcare (Understand) CO2: Apply techniques of healthcare data analysis and analytics for effective decision-making (Apply) CO3: Apply supervised and unsupervised learning techniques to healthcare data (Apply) CO4: Design and develop ML models for healthcare data (Apply) CO5: Evaluate the effectiveness and limitations of Al in Healthcare (Apply) #### CO-PO MAPPING: | POs
COs | PO1 | PO2 | РО3 | PO4 | PO5 | P06 | P07 | P08 | P09 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|--------|-----|---------|---------|-----|------|--------|--------|-------|------|--------|---------|----------|------| | CO1 | 3 | 3 | - | - | - | - | - | - | - | - | ·•, - | - | | | | CO2 | 2 | 2 | - | - | | 3 | | - | - | • | | - | | | | CO3 | 2 | 2 | - | - | (n= | 2 | - | - | - | - | 140 | - | | | | CO4 | 2 | 2 | | - | - | 3 | - | 2 | 2 | - | 2 | 2 | | | | CO5 | 2 | 2 | - | - | - | 3 | | 2 | 2 | - | 2 | - | - | | | Correlation | levels | s: | 1: Slig | ght (Lo | w) | 2: M | oderat | e (Med | dium) | | 3: Sub | stantia | ıl (High |) | #### SYLLABUS: #### UNIT I INTRODUCTION TO HEALTHCARE 9 Overview of AI – Applications in healthcare – Ethical considerations in AI healthcare – Machine learning and deep learning in healthcare – Types of healthcare data – Data pre-processing and cleaning techniques – Feature extraction and selection – Analytics for healthcare data ## UNIT II MEDICAL IMAGING AND DIAGNOSIS 9 Image processing and analysis for medical imaging – Applications of machine learning and deep learning in medical imaging – Real time implementation of image recognition and diagnosis using deep learning Dr. S. Karthikeyan, M.E., Ph.D. Head of the Department Department of CSE(Al and ML) KPR Institute of Engineering and Technology Coimbatore - 641 407. #### **UNIT III ELECTRONIC HEALTH RECORDS AND DATA ANALYTICS** Introduction to electronic health records (HER) and data analytics - Challenges in EHR data analysis and management - Techniques for EHR analysis - Real time implementation of EHR data analysis using machine learning. #### MACHINE LEARNING MODELS FOR HEALTHCARE UNIT IV 9 Supervised and unsupervised learning techniques for healthcare data - Classification and prediction models - Clustering and segmentation models - Model evaluation and selection techniques #### TELEMEDICINE AND REMOTE MONITORING Introduction to telemedicine - Remote monitoring - Analytics for remote patient monitoring - Real time implementation of remote patient monitoring using ML - Clinical decision support systems -Personalized medicine and treatment planning - Medical imaging and analysis - Case Study #### Contact Periods: Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods 45 Periods Total: #### **TEXTBOOKS:** 1. Adam Bohr and Jesse Davis, "Artificial Intelligence in Healthcare", 1st edition, Springer, 2020. 2. Sanjay Saxena and Shakti Kapoor, "Machine Learning for Healthcare Technologies: Fundamentals and Applications", 1st edition, Wiley, 2021 #### REFERENCES: - 1. Jeff Heaton, "Machine Learning and Healthcare Analytics Made Simple: Strategies for Implementing Machine Learning in Healthcare", 1st edition, CreateSpace Independent Publishing Platform, 2019 - 2. G. S. Ooi and S. K. Dhillon, "Big Data Analytics in Healthcare", 1st edition, Springer, 2020 - 3. S. Kevin Zhou, "Deep Learning for Medical Image Analysis", 1st edition, Academic Press, 2018 #### **EVALUATION PATTERN:** | | Contin | uous Internal As | sessments | | | |---|--|---|-----------------|-------------------------------|--------------| | | Assessment I Assessment II (100 Marks) (100 Marks) | | | | End Semester | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | Total Internal
Assessments | Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | _ | | 40 | 60 | | | | 10 | tal | ĺ | 10 | 0 | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose anyone / two components based on the nature of the course. > Dr. S. Karthikeyan, M.E., Ph.D. Head of the Department Department of CSE(Al and ML) KPR Institute of Engineering and Technology Coimbatore - 641 407. # DEPARTMENT OF COMPUTER SCIENCE AND BUSINESS SYSTEMS #### SEMESTER VI | | 21CBX05 BRAND MANAGEMENT | Category: OEC | | | | | | | |----------|--------------------------|---------------|---|-----|---|---|--|--| | U21CBX05 | | L | Т | . Р | J | С | | | | | | 3 | 0 | 0 | 0 | 3 | | | #### PRE-REQUISITES: • Nil #### **COURSE OBJECTIVES:** - · To introduce unique ideas, products and solutions - · To apply comprehend global trends influencing the business environment - . To familiarize creating new ideas and combine multiple perspectives to develop new solutions #### COURSE OUTCOMES: ## Upon completion of the course, the student will be able to - CO1: Understand the original ideas with minimal guidance and implement solutions with strong evidential support (Understand) - CO2: Illustrate multiple idea creation techniques and combine multiple perspectives to develop new solutions (Understand) - CO3: Describe the decisions using multiple international information sources (Apply) - CO4: Apply and appreciate cultural differences with the available information while making decisions (Apply) - CO5: Summarize the consequences of intercultural communication and propose sensitive ways of communicating in the given context (Apply) #### CO-PO MAPPING: | POs
COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|---------|------|---------|---------|-----|------------------|--------|--------|-------|------|--------|---------|----------|------| | CO1 | 2 | 2 | 2 | 2 | | - | - | - | - | - | | 1 | | | | CO2 | 3 | 2 | 2 | 2 | 2 | | - | - | 3. | - | 570 | 1 | | | | CO3 | 3 | 2 | 2 | 2 | 2 | , . . | - | - | | /E3 | - | 2 | | | | CO4 | 3 | 2 | 2 | 2 | 2 | - | - | | 3 | - | | 2 | | | | CO5 | 3 | 3 | 3 | 3 | 3 | - | | - | 3 | | 199 | 2 | | | | Correlation | on leve | els: | 1: Slig | ht (Lov | v) | 2: M | oderat | e (Med | dium) | | 3: Sub | stantia | l (High) | | #### SYLLABUS: #### UNIT I BASICS OF BRAND MANAGEMENT 9 Brands vs Products – Branded offerings – Branding goods – Services – People – Location – Ideas – Digital Brands – Strategic Brand management process. #### UNIT II BUILDING BRAND EQUITY 9 Customer based Brand equity - Brand Knowledge -Building brands -Keller's pyramid model -Aaker's Dr. A. BAZILA BANII M.EYCSE), PH.D. Professor & Head Learnert of Computer Science and Susness Systems NPR Institute of Engineering and Technology Arasur, Combatore - 641407 Dr. A. BAZILA BANU, M.E (CSE)., Ph.D., Professor & Head Department of Computer Science and Business Systems KPR Institute of Engineering and Technology Arasur, Coimbatore - 641407. and Kapferer's models. ### UNIT III CREATING BRANDS 9 Brand Positioning – Core brand associations – Brand Essence and Brand Mantra – Brand elements – Role of Semiotics – Brand Auditing. #### UNIT IV BRAND EQUITY AND BRANDING STRATEGIES 9 Measuring Brand equity - Brand Value chain - Brand tracking studies- Quantitative and qualitative research for brand valuation. Brand strategy - Brand Architecture and hierarchy - Brand extensions and new brands - Co-branding - Reinforcing, revitalizing and adjusting brand portfolio - Challenges and trends. # UNIT V MARKETING PROGRAMS AND BRAND COMMUNICATION 9 Marketing Programs to build brand equity-Product - Pricing and channel strategy- Digital and conventional brand communication. #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** - Kevin Lane Keller, M.G, Parameswaran MG, Jacob Isaac, "Strategic Brand Management", 4th Edition, Pearson education, 2018. - 2. Laura Busche, "Lean Branding Creating Dynamic Brands to Generate Conversion", Shroff Publishers and Distributors Pvt. Ltd, 2019. #### REFERENCES: - Jean Noel Kapferer, "The New Strategic Brand Management", 1st Edition, Kogan Page India Pvt Ltd, 2017. - 2. Harsh V. Verma, "Brand Management Text and Cases", 1st Edition, Excel Books, 2019. - 3. Rajendra K. Srivastava, Gregory Metz Thomas, "The Future of Branding", 1st Edition, New Delhi, Sage Publications India Pvt. Ltd, 2018. #### **EVALUATION PATTERN:** | | Continuous Internal Assessments | | | | | | | | | |--|---------------------------------|--|--|-----|--------------|--|--|--|--| | Assessme
(100 Mari | COLD ST | Assessme
(100 Mar | Total Internal
Assessments Written Test | | End Semester | | | | | | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | | | Examinations | | | | | | 40 | 60 | 40 | 60 | 200 | 100 | | | | | | | Tot | al | 40 | 60 | | | | | | | | | | | 1 | 00 | | | | | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course. Dr. A. BAZILA BANU, M.E (CSE)., Ph.D., Professor & Head Department of Computer Science and Business Systems KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. Dr. A. BAZILA BANU, M.E (CSE)..Ph.D.. Professor & Head Department of Computer Science and Business Systems KPR Institute of Engineering and Technology Arasur Combatore - 641407 # DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SEMESTER VI | | | Category: OEC | | | | | | | |----------|--------------------------------------|---------------|---|---|---|---|--|--| | U21ECX05 | SENSORS FOR ENGINEERING APPLICATIONS | L | Т | Р | J | С | | | | | | 3 | 0 | 0 | 0 | 3 | | | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - To understand the basic concepts of sensor based measurement systems - To learn about the different types of sensors - To acquaint the students with selection of sensors for particular field of application #### COURSE OUTCOMES: #### Upon completion of the course, the student will be able to CO1: Explain the basic concepts of sensor based measurement system (Understand) CO2: Illustrate the operation of thermal and optical sensors (Understand) CO3: Summarize the principles of electrical and high frequency sensors (Understand) CO4: Select suitable biosensor for various biomedical applications (Apply) CO5: Utilize appropriate sensor for civil engineering applications (Apply) #### CO-PO MAPPING: | POs
COs | P01 | PO2 | РО3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|--------|------------|--------|---------|-----|-------|--------|-------|-------|------|--------|---------|----------|------| | CO1 | 2 | - | - | - | 19# | 93-11 | - | | 2 | - | - | 2 | | | | CO2 | 2 | insec
o | 11 A | - | - | - | - | - | 2 | ** | 586 | 2 | | | | соз | 2 | 1 | | - | • | • | - | - | 2 | • | • | 2 | | | | CO4 | 3 | 2 | 2 | - | | - | - | - | 2 | - | - | 2 | | | | CO5 | 3 | 3 | 2 | - | - | - | - | - | 2 | - | - | 2 | | | | Correlation | levels | s: | 1: Sli | ght (Lo | w) | 2: M | oderat | e (Me | dium) | | 3: Sub | stantia | ıl (High |) | #### SYLLABUS: #### UNIT I FUNDAMENTALS OF SENSORS 9 Methods of measurement – Direct methods, Indirect methods – Instruments – Mechanical, electrical and electronic instruments – Applications of measurement systems – Sensor classification – Materials for sensors #### UNIT II THERMAL AND OPTICAL SENSORS 9 Thermal sensors – Temperature, temperature difference, heat quantity – Thermometers for different situation – Thermocouples – Thermistors – Color pyrometry – Optical sensors – Light intensity, wavelength and color, light dependent resistors, photodiode, photo transistor, CCD, CMOS sensors Head of the Department, Electronics & Communication Engineering. KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641 407 #### UNIT III ELECTRICAL AND HIGH FREQUENCY SENSORS 9 Electrical sensors – Conventional volt and ammeters, high current sensors (current transformers), high voltage sensors, high power sensors, high frequency sensors – Microwave frequency sensors – Wavelength measuring sensors – MEMS and MEMS based sensors #### UNIT IV BIOSENSORS FOR BIOMEDICAL ENGINEERING 9 Introduction to biosensors – Biological inspiration – Biosensors and diabetes management – Micro fabricated biosensors and point-of-care diagnostics systems – Non-invasive biosensors in clinical analysis – Biosensor in cancer and HIV early diagnosis #### UNIT V STRUCTURAL HEALTH MONITORING IN CIVIL ENGINEERING C Introduction – Principle – Capacitance probe for cover concrete – Applications for external post – tensioned cable – Capacitance probe for moisture monitoring in historic buildings #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** 1. Jeong-Yeol Yoon, "Introduction to Biosensors", 1st edition, Springer-Verlag New York, 2013 2. Sawhney A.K., "A Course in Electrical and Electronic Measurement and Instrumentation", 7th edition, Dhanpat Rai & Co, 2010 #### REFERENCES: - Daniel Balageas, Claus-Peter Fritzen and Alfredo Güemes, Structural Health Monitoring, 1st Edition, John Wiley & sons, USA, 2010 - 2. Jocob Fraden," Handbook of Modern Sensors, Physics, Designs, and Applications", Springer, 2010 - Doebelin E.O., "Measurement Systems: Applications and Design", 4th edition, Tata McGraw Hill, 2004 - 4. Julian W. Gardner, Vijay K. Varadan, Osama O. Awadelkarim "Microsensors, MEMS and Smart Devices", Reprint 2001, New York: Wiley, 2001 #### **EVALUATION PATTERN:** | | Contin | uous Internal Ass | sessments | | | | | |--|---|--|-----------------|-------------------------------|------------------------------|--|--| | | Assessment I Assessment II
(100 Marks) (100 Marks) | | | | | | | | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Written
Test | Total Internal
Assessments | End Semester
Examinations | | | | 40 | 60 | 40 | 60 | 200 | 100 | | | | | | | 40 | 60 | | | | | | То | tal | | 10 | 0 | | | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course. Head of the Department, Electronics & Communication Engineering, KPR Institute of Engineering and Technology, Afasur, Coimbatore - 641 407. ## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING #### SEMESTER VI | | | | Cate | gory: | OE | 3 | |----------|---------------------------------|---|------|-------|----|---| | U21ECX08 | FUNDAMENTALS OF VLSI TECHNOLOGY | L | Т | P | J | С | | | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - · To learn the basics of MOS transistor theory - To implement combinational and sequential circuits using HDL - · To familiarize about the testing and verification methods #### COURSE OUTCOMES: #### Upon completion of the course, the student will be able to CO1: Explain the principles of MOS devices (Understand) CO2: Apply the concepts of combinational and sequential circuits (Apply) CO3: Summarize the features of Hardware Description Language (Understand) CO4: Implement the digital circuits using hardware description language (apply) CO5: Outline the hardware testing and verification (Understand) ## CO-PO MAPPING: | POs
COs | PO1 | PO2 | PO3 | PO4 | P05 | P06 | P07 | P08 | PO9 | PQ10 | PO11 | PO12 | PS01 | PSO2 | |-------------|-------|-----|---------|---------|-----|------|--------|-------|-------|------|--------|---------|----------|------| | CO1 | 2 | - | | - | - | | - | - | - | - | - | 7.0 | | | | CO2 | 3 | 2 | 1 | | - | - | | 4 | - | 4 | - | | | | | CO3 | 2 | | - | - | - | • | | - | - | | | | | | | CO4 | 3 | 2 | 1 | | 3 | l.e | - | - 1 | - | - | - | - | | | | CO5 | 2 | - | - | - | - | • | - | 4 | | | - | - | | | | Correlation | level | s: | 1: Slig | ght (Lo | ow) | 2: M | oderat | e (Me | dium) | | 3: Sub | stantia | ıl (High |) | #### SYLLABUS: #### UNIT I MOS TRANSISTOR THEORY 9 MOSFET characteristics under static and dynamic conditions – Enhancement NMOS transistor operation and drain to source current expression – Long channel I-V characteristics – C-V characteristics – Non-ideal effects – DC transfer characteristics – Static CMOS inverter characteristics ### UNIT II COMBINATIONAL AND SEQUENTIAL LOGIC CIRCUITS 9 Combinational logic – Static CMOS Design – Complementary CMOS – Ratioed Logic – Pass-Transistor Logic – Dynamic CMOS Design – Dynamic Logic – Sequential logics – Static latches and registers – Dynamic latches and registers Head of the Department, Electronics & Communication Engineering, KPR Institute of Engineering and Technology. #### UNIT III HARDWARE DESCRIPTION LANGUAGE 9 Hardware Modelling with Verilog HDL - Logic System - Data types and Operators - Modeling - Dataflow - Structural - Behavioral #### UNIT IV IMPLEMENTATION OF DIGITAL CIRCUITS 9 Realization of combinational and sequential circuits using Verilog - Registers - Counters - Sequential machine - Serial adder - Full adder - Full subtractor - Multiplexer and demultiplexer #### UNIT V TESTING AND VERIFICATION 9 Testing vs Verifications - Design and Verifications - Functional verification approach - Formal verification approach - Test generation - DFT schemes - Built in Self-Test #### Contact Periods: Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### TEXT BOOKS: Jan M. Rabaey, Anantha Chandrakasan, Borivoje. Nikolic, "Digital Integrated Circuits: A Design perspective", 2nd edition, Pearson, 2016. Samir Palnitkar, "Verilog HDL – A Guide to Digital Design and Synthesis", 2nd edition, Pearson, 2003 #### REFERENCES: Neil H.E. Weste, David Money Harris, "CMOS VLSI Design: A Circuits and Systems Perspective", 4th edition, Pearson, 2011 D.A. Hodges and H.G. Jackson, "Analysis and Design of Digital Integrated Circuits", International Student edition, McGraw Hill 1983 3. Sze S.M., "VLSI Technology", McGraw Hill, New York, 2nd edition, 2008 Janik Bergeron "Writing Test Benches:
Functional Verification of HDL models", 2nd edition, Springer 2003 #### **EVALUATION PATTERN:** | | Contin | uous Internal Ass | sessments | | | |--|-------------------|--|------------------------------|-------------------------------|------------------------------| | Assessme
(100 Mark | SOURCE CONTRACTOR | | Assessment II
(100 Marks) | | | | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Written
Test | Total Internal
Assessments | End Semester
Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | | in the second of | | 40 | 60 | | Total | | | | 10 | 0 | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course. Head of the Department, Electronics & Communication Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641 407. ### B.E. / B. Tech. - OE - R2021 - CBCS #### SEMESTER VI | | | etora | Cate | gory | : OE | С | |----------|--------------------|-------|------|------|------|---| | U21EEX05 | BATTERY TECHNOLOGY | L | Т | P | J | С | | | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - To acquire the knowledge on energy storage technologies - · To understand the construction, operation and testing of batteries - To apply the safety aspects of high voltage batteries #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Describe the fundamentals of electro chemical energy storage systems (Understand) CO2: Explain the construction and operation of primary batteries (Understand) CO3: Summarize the fabrication and performance of secondary batteries (Understand) CO4: Infer various testing methods of batteries (Understand) CO5: Illustrate the safety aspects of high voltage batteries (Understand) #### CO-PO MAPPING: | Correlation | levels | 3: | 1: Slig | ght (Lo | w) | 2: M | oderat | e (Med | dium) | | 3: Sub | stantia | l (High |) | |-------------|--------|-----|---------|---------|-----|------|--------|--------|-------|------|--------|---------|---------|-----| | CO5 | 3 | 2 | 1 | | 1 | • | - | • | # | | • | 1 | | | | CO4 | 3 | 2 | 1 | | 1 | | -5 | - | - | • | | 1 | 1000 | | | СОЗ | 3 | 2 | 1 | | - | - | - | • | - | | - | 1 | | | | CO2 | 3 | 2 | 1 | - | - | - | | • | - | | | 1 | | | | CO1 | 3 | 2 | 1 | | 1 | - | - | - | - | | • | 1 | | | | POs | PO1 | PO2 | PO3 | P04 | PO5 | PO6 | P07 | P08 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO | #### SYLLABUS: # UNIT | ELECTROCHEMICAL ENERGY STORAGE 9 Electromotive force – Reversible cells – Relation between electrical energy and energy content of a cell – Free energy changes in cell – Current challenges in energy storage technologies ## UNIT II PRIMARY BATTERY 9 Dry cells and alkaline batteries – Fabrication techniques – Voltage data – Ohmic load curve – Effect of operating temperature – Rating – Service time and life – Safety Head of the Department, Electrical & Electronics Engineering KPR Institute of Engineering and Technology, Missun Coimbatore - 641 407, ## B.E. / B.Tech. - OE - R2021 - CBCS #### SECONDARY BATTERY UNIT III Lead acid batteries - Construction - Working principle - Characteristics - SOC - SOH - DOD -Recent developments - Solid state batteries - Applications ### **BATTERY TESTING** 9 Constant current and constant voltage methods - Hybrid methods - Inductive chargers - Battery power testing for various vehicles - Testing for urban and highway driving cycles # SAFETY ASPECTS OF HIGH VOLTAGE BATTERIES 9 Code and standards - Safe handling of Lithium - ion batteries - Safety of high voltage devices -Fundamentals of battery management systems and control #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** Kirby W. Beard, "Linden's Handbook of Batteries", 5th edition, Mc Graw-Hill education, 2019 2. Albert N Link, Alan C O'Connor and Troy Scott, "Battery Technology for Electric Vehicles", 1st edition, Earthscan from Routledge, 2015 #### REFERENCES: 1. Xianxia Yuan, Hansan Liu, Jiujun Zhang, "Lithium-Ion Batteries: Advanced Materials and Technologies", 1st edition, CRC press, Taylor and Francis group, New York, 2011 2. Iqbal Husain, "Electric and Hybrid Vehicles", 2nd edition, CRC press, Taylor and Francis group, New York, 2011 3. Westbrook M H., "The Electric Car: Development and Future of Battery, Hybrid and Fuel cell Cars", Warrandable PA, 1st edition, Society of Automotive Engineering, 2001 #### **EVALUATION PATTERN:** a market at the trace and the transfer of | | Contin | uous Internal Ass | sessments | | | |---|--|---|-----------------|----------------|--------------| | Assessme
(100 Mark | The second secon | Assessment II
(100 Marks) | | Total Internal | End Semester | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual Assignment / Case Study / Seminar / Project / MCQ | Written
Test | Assessments | Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | 1 | | | 40 | 60 | | Total | | | | 10 | 0 | ^{*}Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course. Head of the Department, Electrical & Electronics Engineering. KPR Institute of Engineering and Technology. Arasur, Coimbatore - 641 407. #### SEMESTER VI | | | | Cate | gory | OE | C | |---------|--------------|---|------|------|----|------| | 21EEX08 | ENERGY AUDIT | L | Т | Р | 3 | imbi | | | | 3 | 0 | 0 | 0 | 3 | ## PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - To acquire the knowledge on energy scenario, conservation and its policies - · To understand the concepts of energy management and audit procedures - · To understand the energy efficiency in electrical and thermal utilities #### COURSE OUTCOMES: #### Upon completion of the course, the student will be able to CO1: Explain the energy scenario, conservation and policies (Understand) CO2: Infer the energy management and audit process (Understand) CO3: Summarize the financial and project planning techniques (Understand) CO4: Interpret the energy efficiency in electrical utilities (Apply) CO5: Illustrate the energy efficiency in thermal utilities (Apply) #### CO-PO MAPPING: | Correlation | levels | s: | 1: Slig | ght (Lo | w) | 2: Mc | oderat | e (Med | dium) | | 3: Sub | stantia | l (High |) | |-------------|--------|-----|---------|---------|-----|-------|--------|--------|-------|------|--------|---------|---------|------| | CO5 | 3 | 2 | - | 4 | 1 | 1 | 2 | 2 | - | - | - | 1 | | | | CO4 | 3 | 2 | - | 1 | 1 | 1 | 2 | 2 | • | - | - | 1 | | | | CO3 | 3 | 2 | - | - | 73 | 1 | 2 | 2 | - | | 1 | 1 | | | | CO2 | 3 | 2 | - | - | 1 | 1 | 2 | 2 | - | - | - | 1 | | | | CO1 | 3 | 2 | - | - | - | 2 | 2 | 2 | | - | - | 1 | | | | POs | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO: | ### SYLLABUS: UNIT I ENERGY SCENARIO, ENERGY CONSERVATION ACTS AND POLICIES . Primary and secondary energy – Commercial and non-commercial energy – Energy consumption – Indian energy scenario – Energy conservation: Importance – Features of energy conservation Act – Schemes of BEE – Electricity Acts – Integrated energy policy – National action plan on climate change. UNIT II ENERGY MANAGEMENT AND ENERGY AUDIT 9 Energy Management – Need for energy audit
– Types – Costs – Benchmarking –Instruments and metering for audit – Audit procedures and time intervals – Case study #### UNIT III FINANCIAL AND PROJECT MANAGEMENT 9 Financial analysis techniques – Cash flow – Sensitivity and risk analysis – Financing options – ESCOs – Project development cycle – Project planning techniques Head of the Department, Electrical & Electronics Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641 407. #### **ENERGY EFFICIENCY IN ELECTRICAL UTILITIES UNIT IV** Types of Motors - Energy Efficiency: Fan, Blowers, Pumps, HVAC and Lighting System - Energy Efficient Motors - Case Study. #### **ENERGY EFFICIENCY IN THERMAL UTILITIES** UNIT V Fuels: Types - Properties - Combustion - Energy Efficiency: Boiler and types- Steam System -Furnace and types- Heat Exchangers - Case Study. #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** 1. "General Aspects of Energy Management and Energy Audit", 4th edition, Bureau of Energy Efficiency, New Delhi, India, 2015 2. "Energy Efficiency in Electrical Utilities", 4th edition, Bureau of Energy Efficiency, New Delhi, 3. "Energy Efficiency in Thermal Utilities", 4th edition, Bureau of Energy Efficiency, New Delhi, 2015. ## REFERENCES: 1. Albert Thumann, William J. Younger, "Handbook of Energy Audits", 9th Edition, Taylor & Francis Group, 2013 2. Rajiv Shankar, "Energy Auditing in Electrical Utilities", Viva Books, 2014 3. K V Sharma and P Venkataseshaiah, "Energy Management and Conservation", 1st edition, International Publishing House pvt.ltd,2011. #### **EVALUATION PATTERN:** | | Contin | uous Internal Ass | sessments | | | | |---|-----------------|---|-----------------|----------------|--------------|--| | Assessme
(100 Mark | (Anogorows | Assessment II
(100 Marks) | | Total Internal | End Semester | | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual Assignment / Case Study / Seminar / Project / MCQ | Written
Test | Assessments | Examination | | | 40 | 60 | 40 | 60 | 200 | 100 | | | | | 77 (89) | | 40 | 60 | | | | Total | | | | 0 | | ^{*}Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course. Head of the Department, Electrical & Electronics Engineering. KPR Institute of Engineering and Technology. Arasur, Coimbatore - 641 407. # DEPARTMENT OF INFORMATION TECHNOLOGY SEMESTER VI | | | A CON | Cate | gory: | OE | C | |----------|-----------------------|-------|------|-------|----|---| | U21ITX05 | SOCIAL MEDIA SECURITY | L | T | P | J | С | | | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - Introduction to online social network and its impact on society - · Understanding various threats, challenges and privacy issues in online social network - Make use of threat handling tools for solving real world issues #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Infer the basic concepts, categories and impact of online social networks on users (Understand) CO2: Understanding the various threats on online social networks and appropriate solutions against them (Understand) CO3: Demonstrate the social authority in social platform (Apply) CO4: Make use of machine learning and deep learning to detect OSN attacks (Apply) CO5: Utilizing various threat handling tools for solving real-world threats (Apply) #### CO-PO MAPPING: | CO2 | 1 | (1 4) | - | - | 1 | 1 | - | 2 | - | - | - | - | | |-----|---|-------------------|------------|---|---|---|---|---|------|---|---|---|--| | CO3 | 3 | 1 · | - | | 2 | 1 | - | 2 | - | - | - | 1 | | | CO4 | 3 | 1 | R 0 | | 2 | 2 | | 2 | May. | - | - | 1 | | | CO5 | 2 | 1 | - | - | 2 | 2 | - | 2 | - | - | - | 1 | | #### **SYLLABUS** #### UNIT I ONLINE SOCIAL MEDIA AND THEIR IMPACT ON USERS 9 Online social media Vulnerabilities – Functional parameters – Interaction among service providers and its users – Background and motivation – Statistical analysis – Categories of online social media – Rapid growth of Social network environment – Usage of online social media based on requirement – Online social media issues and impact – Difficulties in detection and mitigation of various attacks against OSNs #### UNIT II SECURITY CHALLENGES IN SOCIAL NETWORKS 9 Dark side of online social media and media - Opportunities - Taxonomy of online social media based attacks - Advanced persistent threats - Classical threats - Social threats - Taxonomy of Department of Information Technology KPR Institute of Engineering and Technology Coimbatore - 641 407 various solutions against online social media attacks - In-built security solution - Third party software solutions - Other security attacks # FUNDAMENTALS OF ONLINE SOCIAL MEDIA S AND OPPORTUNITIES Opportunities in social media - Branding - Building of social authority in social platform - Customers engagement - Consumer brand related activity - Hashtag - Mistake in replying to users of social network - Collective intelligence. #### MACHINE LEARNING AND DEEP LEARNING BASED SECURITY **UNIT IV** SOLUTIONS Introduction - Problem definition - Proposed approach for fake account detection - Characteristics analysis of Twitter accounts - Selection of features and computing feature sets - Construction of raw dataset and the creation of a labeled dataset from raw data - Petri-net based analyzer - Simulation of Petri Net in PN2 environment - Verification using SPIN model checker - Evaluation of result and performance analysis #### THREAT HANDLING TOOLS **UNIT V** 9 Social media platforms - Categories of social media attacks based on account types - Categories of online social media attacks - Cyber security tools for protecting user account and information - Tips to protect system, account, information - Open issues and challenges in existing security solutions -Principles to protect the user account on a social platform #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### TEXT BOOK: 1. Brij B. Gupta, Somya Ranjan Sahoo, "Online Social Networks Security: Principles, Algorithm, Applications, and Perspectives", 1st Edition, Knowledge works global ltd, Oxon, 2021 #### REFERENCES: - Borko Furht, Handbook of Social Network Technologies and Applications, 1st Edition, Springer. - 2. Guandong Xu , Yanchun Zhang and Lin Li, "Web Mining and Social Networking Techniques and applications", 1st Edition, Springer, 2011 - 3. Max Chevalier, Christine Julien and Chantal Soulé-Dupuy, "Collaborative and Social Information Retrieval and Access: Techniques for Improved user Modelling", IGI Global Snippet, 2009 #### **EVALUATION PATTERN:** | | Contin | uous Internal As | sessments | E. | | | | | |---|-----------------|---|-----------------|-------------------------------|------------------------------|--|--|--| | Assessme
(100 Mark | | Assessme
(100 Mark | | T. 4-11-41 | End Semester
Examinations | | | | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | Total Internal
Assessments | | | | | | 40 | 60 | 40 | 60 | 200 | 100 | | | | | | | | | 40 | 60 | | | | | Y The second | Total | | | | 00 | | | | ^{*}Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course. ## DEPARTMENT OF INFORMATION TECHNOLOGY SEMESTER VI | | | 100 | Cate | gory: | OE | 3 | |----------|------------------------------|-----|------|-------|----|---| | U21ITX06 | ENTERPRISE RESOURCE PLANNING | L | T | P | J | С | | | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: NIL #### COURSE OBJECTIVES: - To offer a current and forward-looking analysis of the theory and application of enterprise resource planning technology - To develop the basic understanding of how ERP enriches the business organizations in achieving a multidimensional growth - Aspire to equip them with higher technical skills so they can upgrade themselves #### COURSE OUTCOMES: Upon completion of the course, the student will be able to - CO1: Employ enterprise software in its most basic capacities and consider how it helps to integrate business functions (Understand) - CO2: Show an in-depth understanding of the fundamental issues associated with ERP systems (Understand) - CO3: Design the ERP implementation strategies (Apply) - CO4: Analyse the strategic options for ERP identification and adoption (Analyze) - CO5: Comprehend the necessity of Business Systems and Processes through a strategic analysis of ERP systems (Understand) #### CO-PO MAPPING: | POs
COs | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|--------|-----|--------|---------|-----|------|--------|-------|-------|------|--------|---------|---------|------| | CO1 | 2 | - | - | - | - | 2 | | 1 | 1 | - | 1 | - | | | | CO2 | 2 | - | - | | - | 2 | - | 1 | 2 | - | 1 | - | | | | СОЗ | 2 | - | | 1 | - | 2 | - | 1 | 2 | 1 | 2 | 2 | | | | CO4 | 2 | 3 | | 2 | 3 | 2 | | 1 | 2 | 1 | 2 | 2 | | | | CO5 | 2 | = | - | 1 | - | 2 | | 1 | 1 | - | 2 | | | | | Correlation | levels | s: | 1: Sli | ght (Lo | ow) | 2: M | oderat | e (Me | dium) | | 3: Sub | stantia | l (High | 1) | #### SYLLABUS: #### UNIT I INTRODUCTION 9 Introduction – Related
technologies – Business intelligence – E-Commerce and E-Business – Business process reengineering – Data warehousing – Data mining – Online analytical processing (OLAP) – Product life cycle management – Supply chain management – Customer relationship management. UNIT II ERP INTRODUCTION 9 Implementation challenges - Strategies - Life cycle - Pre-implementation tasks - Requirements Department of Information Technology KPR Institute of Engineering and Technology Coimbatore - 641 407 Colmbators - 641 497 #### B.E. / B.Tech. - OE - R2021 - CBCS definition - Methodologies - Package selection - Project teams - Process definitions - Vendors and consultants - Data migration - Project management - Post implementation activities. #### **ERP IN ACTION AND BUSINESS MODELS UNIT III** Operation and maintenance - Performance - Maximizing the ERP system - Business modules -Finance - Manufacturing - Human resources - Plant maintenance - Materials management -Quality management - Marketing - Sales, distribution and service. #### **UNIT IV ERP MARKET** Marketplace - Dynamics - SAP AG - Oracle - PeopleSoft - JD Edwards - QAD Inc - SSA Global - Lawson software - Epicor - Intutive. #### **ENTERPRISE APPLICATION INTEGRATION** UNIT V Enterprise application integration - ERP and E-Business - ERP II - Total quality management -Future directions - Trends in ERP. #### Contact Periods: Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** - 1. Gerardus Blokdyk, "Enterprise Resource Planning A Complete Guide", The Art of Service, 1st Edition, 2021 - 2. Steven Scott Phillips, "Control Your ERP Destiny: Reduce Project Costs, Mitigate Risks, and Design Better Business Solutions", 3rd edition, Amazon, 2019 #### REFERENCES: - 1. Jose Antonio Fernandez, The SAP R/3 Handbook, 2nd Edition, Tata McGraw Hill, 2015. - 2. Michael W. Pelphrey ,Directing the ERP Implementation (Resource Management),1st Edition, - 3. Ashim Raj Singla, "Enterprise Resource Planning", 2nd Edition, Cengage India Private Limited, 2016. #### **EVALUATION PATTERN:** | | Conti | nuous Internal As | ssessments | | | |---|-----------------|---|-----------------|-------------------------------|------------------------------| | Assessme
(100 Mar | 197 | Assessme
(100 Mar | | | | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | Total Internal
Assessments | End Semester
Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | To | otal | | 40 | 60 | | | | | | 10 | 0 | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course. > Department of Information Technology KPR Institute of Engineering and Technology Coimbatore - 641 407 # DEPARTMENT OF MECHANICAL ENGINEERING SEMESTER VI | | 21MEX05 AUTOMOTIVE SYSTEMS | | Cate | gory | : OE | 3 | |----------|----------------------------|---|------|------|------|---| | U21MEX05 | AUTOMOTIVE SYSTEMS | L | T | Р | J | С | | | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - To understand the auxiliary systems of an automotive engine, and types of frames and steering systems - · To learn the different types of transmission, suspension and braking systems - To study about various alternative sources of energy in SI and CI engines #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Identify the different types of engines, injection and ignition systems (Understand) CO2: Use the knowledge on various types of chassis, frames and steering systems (Understand) CO3: Recognize various transmission systems and its components (Understand) CO4: Identify different suspension, braking systems, and distribution of forces (Understand) CO5: Discuss appropriate alternative sources of energy in SI and CI engines (Understand) #### CO-PO MAPPING: | POs
COs | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | PO7 | P08 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|--------|---------|---------|-----|-----|---------------|--------|--------|-----|--------------|---------------|--------|-----------|-------| | CO1 | 3 | 1 | 1 | - | - | | - | | - | | - | 1 | | | | CO2 | 3 | 1 | 1 | - | - | () 2 (| - | - | 2 | : · | (12) | 1 | | | | CO3 | 3 | 1 | 1 | - | | - | - | - | | 2₩ | - | 1 | | | | CO4 | 3 | 1 | 1 | - | - | - | - | - | - | - | | 1 | | | | CO5 | 3 | 2 | 2 | - | - | ×= | - | - | 9 | o ≠ : | - | 2 | | | | Correlation | levels | : 1:Sli | ight (L | ow) | 2: | Moder | ate (N | ledium | 1) | | 3: | Substa | intial (I | High) | #### SYLLABUS: #### UNIT I AUTOMOTIVE ENGINE AUXILIARY SYSTEMS 9 Automotive engines – External & Internal combustion engines – Classification of engines – SI Engines – Cl Engines – Two stroke engines – Four stroke engines – Construction and working principles – IC engine components – Functions and materials – Valve timing – port timing diagram – Injection system – Unit injector system – Rotary distributor type – Electronically controlled injection system for SI engines – CI engines. Ignition system – Electronic ignition system – Transistorized ignition system – Capacitive discharge ignition system #### UNIT II VEHICLE FRAMES AND STEERING SYSTEM3 9 Vehicle construction and different chassis layouts – Classifications of chassis – Types of frames – Frameless chassis construction – Articulated vehicles – Vehicle body – Vehicle aerodynamics – various resistances and its effects – Steering system – Conventional – Sophisticated vehicle – Types of steering gear box – Power steering – Steering geometry – Condition for true rolling motion Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. - Ackermann's - Devis steering system - Types of stub axle - Types of rear axles #### TRANSMISSION SYSTEMS Clutch - Types and construction - Gear boxes - Manual and automatic - Gear shift mechanisms over drive - Transfer box - Fluid flywheel - Torque converter - Propeller shaft - Slip joints -Universal joints - Hotchkiss drive and Torque Tube Drive - Rear axle differential - Wheels and tyres #### UNIT IV SUSPENSION AND BRAKES SYSTEM Suspension Systems - Conventional suspension systems - Independent suspension systems -Leaf spring - Coil spring - Taper - Lite - Eligo's spring - Types of brakes - Pneumatic and hydraulic braking systems - Antilock Braking System (ABS) - Electronic brake force distribution (EBD) and traction control - Equation of Forces acting while applying a brake on plain surface inclined road - Gradient #### **UNIT V ALTERNATIVE ENERGY SOURCES** Natural gas - Liquefied petroleum gas - Bio - Diesel - Bio - Ethanol - Gasohol and hydrogen in automobiles - Engine modifications required - Performance - Combustion and emission characteristics of SI and CI engines with these alternate fuels - Electric and hybrid vehicles - Fuel cell - Turbo chargers - Engine emission control by three - Way catalytic converter system #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project : - Periods Total: 45 Periods #### **TEXT BOOKS:** 1. Ganesan V. Internal Combustion Engines, 4th edition, McGraw Hill, Europe, 2017 2. Jain K.K. and Asthana R.B., Automobile Engineering, 4th edition, Tata McGraw Hill Publishers, New Delhi, 2017 #### REFERENCES: - Kirpal Singh, Automobile Engineering, Vol 1 and 2, 7th edition, Standard Publishers, New Delhi, - 2. Ramalingam K. K. Automobile Engineering, 1st edition, Scitech Publications (India) Pvt Ltd, Chennai, 2017 - 3. Gill P. S. A Textbook of Automobile Engineering, Vol I, II and III, 5th edition, S.K. Kataria & Sons, New Delhi 2012 #### **EVALUATION PATTERN:** | | Contin | uous Internal As | sessments | 3 | | |---|---|---|-----------------|-------------------------------|------------------------------| | | Assessment I Assessment (100 Marks) (100 Marks) | | | | | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | Total Internal
Assessments | End Semester
Examinations | | 40 | 60 | -40 | 60 | 200 | 100 | | | То | tal | | 40 | 60 | | | | | | 1 | 00 | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course. > Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. #### B.E. / B.Tech. - OE - R2021 - CBCS #### SEMESTER VI | 1 7 | | Coimpana | Cate | gory | : OE | С | |----------|---------------------|----------|------|------|------|---| | U21MEX06 | LOW COST AUTOMATION | L | Т | Р | J | С | | | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - To provide basic knowledge about automation - · To explain the application of hydraulic and pneumatic systems for automation - To explain the various methods and devices used in assembly automation #### COURSE OUTCOMES: Upon completion of the course, the student will be able to - CO1: Explain the methods and levels of automation (Understand) - CO2: Develop simple hydraulic circuits and apply them in implementing automated systems (Understand) - CO3: Develop simple pneumatics circuits and apply them in implementing automated
systems (Understand) - CO4: Apply the principles and methods of assembly automation (Apply) - CO5: Select the various part feeding systems and configurations of automated assembly systems and apply them in implementing automation (Understand) #### CO - PO MAPPING: | POs
COs | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |------------|---------|--------|---------|------|-----|-------|----------|--------|-----|------|------|--------------|----------|-------| | CO1 | 3 | - | | - | - 7 | - | * | - | - | | - | - | | | | CO2 | 3 | - | - | - | - | - | - | - | - | - | | 4 | | | | CO3 | 3 | | - | - | - | - | - | - | - | | - | 200 | | | | CO4 | 3 | 142 7 | - | - | - | - | - | - | - | - | 12 | (4) | | | | CO5 | 3 | 2 | | | | - | - | - | | (F) | | (190) | | | | Correlatio | n level | s: 1:S | light (| Low) | 2 | :Mode | erate (I | Vediur | n) | | 3 | :Subst | antial (| High) | #### SYLLABUS: #### UNIT I INTRODUCTION TO AUTOMATION 9 Concept of automation – Mechanization and automation – Concept of automation in industry automation – Classification Automation in production systems – Principles and strategies – Elements, functions – Product / production relationships – Manufacturing economics – Automated systems – Elements – Functions – Levels #### UNIT II AUTOMATION USING HYDRAULIC SYSTEMS 9 Design aspects of various elements of hydraulic systems such as pumps – Valves, filters, reservoirs, accumulators, actuators, and intensifiers etc., Selection of hydraulic fluid – Design simple hydraulic circuits like Regenerative circuit, Automatic cylinder reciprocation circuit, two hand safety control circuit and hydraulic circuit for arm extension of a robot; servo valves, electro hydraulic valves, proportional valves and their applications Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. #### AUTOMATION USING PNEUMATIC SYSTEMS **UNIT III** Pneumatics fundamentals - Control elements, position and pressure sensing, logic circuits switching circuits - Sequential circuits - Cascade methods, KV mapping - Pneumatic equipments - Selection of components - Design calculations; Application - Hydro pneumatic circuits, vibration bowl feeder ## **AUTOMATION USING ELECTRONIC SYSTEMS** Introduction - Various sensors - Transducers - Signal processing - Servo systems - Programming of microprocessors using 8085 instructions; programmable logic controllers (PLC); Use of microprocessors for sequencing - Low cost PLC based robotic circuits #### ASSEMBLY AUTOMATION **UNIT V** Types and configurations - Parts delivery at workstations - Automation devices - Hopper feeders, rotary disc feeder, centrifugal and orientation - Product designs for automated assembly, balancing of assembly line using available algorithms - Transfer line - Monitoring system (TLMS) using line status - Line efficiency - Buffer stock simulation in assembly line #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### TEXT BOOKS: - Anthony Esposito, "Fluid Power with applications", 1stedition, Prentice Hall international, 2013 - 2. Mikell P Groover, "Automation, Production System and Computer Integrated Manufacturing", 1stedition, Prentice Hall Publications, 2015 #### REFERENCES: - 1. Srinivasan R, "Hydraulic and Pneumatic Controls", 1stedition, McGraw Hill Education (India) Pvt Ltd, 2008 - 2. Kuo. B.C. "Automatic control systems", 1stedition, Prentice Hall India, New Delhi, 2014 - 3. Majumdar.S.R, "Pneumatic System", 1stedition, Tata McGraw Hill, 2006 - 4. Peter Rohner, "Industrial hydraulic control", 1stedition, Wiley Edition, 2005 #### **EVALUATION PATTERN:** | Assessme
(100 Mark | 1000 | Assessme
(100 Mar | (100 P) (100 P) | | End Semester | |---|-----------------|---|-----------------|-------------------------------|--------------| | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | Total Internal
Assessments | Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | | | | 40 | 60 | | Total | | | | | 0 | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course. > Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. ## DEPARTMENT OF MECHATRONICS ENGINEERING #### SEMESTER VI | | 6 S. J. 19 S. J. S. S. L. 19 S. B. 19 V. 15 S. V. | 13.9 | Cate | gory: | ÓE | 3 | |------------|---|------|------|-------|----|---| | U21MIX05 | PRODUCT DESIGN AND DEVELOPMENT | L | Т | P | J | С | | OZ HVIIXOS | | 3 | 0 | 0 | 0 | 3 | ## PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - To learn about product development methods based on current innovative trends. - To understand the requirements of customers and product planning process. - To learn the product specifications and concept generation screening and testing. - To know the product architecture, industrial design considerations and prototyping. #### COURSE OUTCOMES: ## Upon completion of the course, the student will be able to CO1: Infer the basic need for new product design and development process (Understand) CO2: Identify opportunities and customer needs for new product development (Apply) CO3: Arrive at product specification and develop concepts for new product (Apply) CO4: Establish the overall product architecture and assess its industrial design (Apply) CO5: Assess the design from environmental, manufacturing and supply chain perspective and develop prototypes (Apply) #### CO-PO MAPPING: | POs
COs | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|---------|-----|--------|---------|-----|------|-------|--------|-------|------|--------|---------|----------|------| | CO1 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | - | - | | 3 | - 1 | | | CO2 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | - | - | - | 3 | | | | CO3 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | - | - | - | 3 | | | | CO4 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | - | | - | 3 | | | | CO5 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | - | 1877 | - | 3 | | | | Correlation | n level | s: | 1: Sli | ght (Le | ow) | 2: M | odera | te (Me | dium) | | 3: Sub | stantia | al (High | 1) | #### SYLLABUS: #### DEVELOPMENT PROCESSES AND ORGANIZATIONS UNIT I Introduction to new product and product design - Characteristics of successful product development - The challenges in product development - Product development process - Adapting generic product development process - Product development process flows - Product development organizations #### OPPORTUNITY IDENTIFICATION AND PRODUCT PLANNING **UNIT II** Types of opportunities - Structure of Opportunity Identification - Opportunity identification process; Product Planning Process - Four types of product development projects - Steps in Product Planning - Identifying Customer needs UNIT III PRODUCT SPECIFICATIONS AND CONCEPT GENERATION Product Specifications - Target and final specifications Concept generation. Five step methodineering Concept selection - Concept screening - Concept scoring - Concept selection and Tachnology KPR Institute of Engineering and Technology Avinashi Road, Arasur, Coimbatore - 641407 Tamilnadu, India cademic ahi Road, Amsur, Colmbatore - 641407 Temilnedu, India ## UNIT IV PRODUCT ARCHITECTURE AND INDUSTRIAL DESIGN Implications of the architecture - Establishing the architecture - Delayed differentiation - Platform Planning - System level design issues Industrial Design - Assessing the Need for Industrial Design and its impact - Industrial design process and management - Assessing the quality of Industrial Design ## UNIT V DESIGN CONSIDERATIONS AND PROTOTYPING 9 Design for environment - Design for manufacturing and supply chain; Prototyping - Principles - Technologies - Planning for prototypes - Robust design - Process flow #### **Contact Periods:** Lecture: 45 Periods Tutorial: Periods Practical: - Periods Project - Periods Total 45 Periods #### **TEXTBOOKS:** 1. Ulrich, Karl T, Eppinger, Steve D, and Yang, Maria C, "Product Design and Development", 7th Edition, McGraw-Hill Education, 2020 2. Devdas Shetty, "Product Design for Engineers", Cengage Learning, Boston, 2016 #### REFERENCES: Maddock M and Uriarte L, "Brand New: Solving the Innovation Paradox – How Great Brands Invent and Launch New Products, Services and Business Models", John Wiley & Sons, Inc, New Jersey, 2011 2. Steven W Trimble and Abdelrahman N Shuaib, "Product Design and Development Handbook", Cognella, United States, 2022 #### **EVALUATION PATTERN:** Capacitative Machania R. Institute of Engineering and fire | | Contin | uous Internal As | sessments | | | |---|-----------------|---|-----------------|-------------------------------|--------------------------| | Assessme
(100 Mark | | Assessme
(100 Mar | 70-040/20-000 | | End | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | Total Internal
Assessments | Semester
Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | | a : | | 40 | 60 | | | To | tal | | 10 | 0 | ^{*}Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course. Head of the
Department Department of Mechatronics Engineering KPR Institute of Engineering and Technology Avinashi Road, Arasur, Coimbatore - 641407 Tamilnadu, India # DEPARTMENT OF MECHATRONICS ENGINEERING Academic #### SEMESTER VI | U21MIX06 | | Category: OEC | | | | | | | | |--|---|---------------|---|---|---|---|--|--|--| | | INTRODUCTION TO INDUSTRIAL INTERNET OF THINGS | L | T | P | J | С | | | | | CANTANINE PROPERTY CONTROL OF THE STATE T | THINGS | 3 | 0 | 0 | 0 | 3 | | | | ## PRE-REQUISITES: Nil ## **COURSE OBJECTIVES:** - To learn about the modify of existing industrial systems with IoT concepts - To understand the importance of IIoT architecture, sensors and interfacing units - To learn the protocols required for industrial data transmission - To know the IIoT application domains in various industries with AR and VR technologies #### COURSE OUTCOMES: ## Upon completion of the course, the student will be able to CO1: Comprehend the fundamentals of IIoT and its potential, challenges (Understand) CO2: Infer the various components and architecture of IIoT (Understand) CO3: Design the sensors based IIoT architecture with interface standards (Apply) CO4: Realize and choose the Protocols and Cloud platforms for different IIoT solutions (Apply) CO5: Build the concepts of Design Thinking for industrial applications (Apply) #### CO-PO MAPPING: | Vicini | | _ | | | | | 1 | | | | | | | | |-------------|-------|-----|--------|---------|-----|------|--------|--------|----------------|------|--------|---------|----------|------| | POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | P08 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | CO1 | 3 | 2 | 2 | 2 | 3 | - | - | - | - 7 | - | - | 1 | | | | CO2 | 3 | 2 | 2 | 2 | 3 | - | - | # | - | - | | 1 | | | | CO3 | 3 | 2 | 2 | 2 | 3 | - | - | - | - | | | _1 | | | | CO4 | 3 | 2 | 2 | 2 | 3 | - | 121 | - | - | - | 3400 | 1 | | | | CO5 | 3 | 2 | 2 | 2 | 3 | - | - | - | - | - | - | 1 | | | | Correlation | level | s: | 1: Sli | ght (Lo | ow) | 2: M | oderat | te (Me | dium) | 7. 1 | 3: Sub | stantia | al (High | 1) | #### SYLLABUS: #### INTRODUCTION UNIT I Introduction - IoT Architecture - Application-based IoT Protocols - Infrastructure-based protocols -Data protocols -Transport protocols Cloud Computing: Types of cloud - Business aspects of cloud - Virtualization - Key aspect of cloud computing - Mobile cloud computing - Fog Computing: Applications of Fog computing Sensor Cloud: Applications of Sensor Cloud - Big Data #### **UNIT II IIOT ARCHITECTURES** Overview of IoT components - Various architectures of IoT and IIoT, Advantages and disadvantages, Industrial internet - Reference architecture; IloT system components: Sensors, Gateways, Routers, Modem, Cloud brokers, servers, and its integration, WSN, WSN network design. for IoT Head of the Depar UNIT III SENSOR AND INTERFACING Head of the Department Courses rtment of Mechatronics Engineering hsors in Helpidarching Whe Technology lents for ItoT sensors Thole of 641407 shi Road, Arasur, Colmbatore 641407 Introduction to Sensors, Transducers, Classifications - Roles of Sensors sensors - Design of sensors: sensor architecture, special requireme Tamilnadu, India actuators - Types of actuators - Hardwire the sensors with different protocols such as HART. MODBUS - Serial and Parallel, Ethernet, BACNet and M2M #### PROTOCOLS AND CLOUD 9 Introduction to Industrial data transmission, Features & Components: Fieldbus, Profibus, HART, Interbus, Bitbus, CC-link, Modbus, Batibus, DigitalSTROM, Controller area network. DeviceNet. LonWorks, ISA 10011a, Wireless HART, LoRa & LoRaWAN, NB-IoT, IEEE 80211AH Clouds: Types of clouds #### **UNIT V** INDUSTRIAL IOT- APPLICATION DOMAINS Healthcare, Power plants - Inventory management and quality control - Plant safety and security (Including AR and VR safety applications), Facility management - Oil - Chemical and pharmaceutical industry - Applications of UAVs in Industries #### Contact Periods: Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project - Periods Total 45 Periods #### TEXTBOOKS: 1. Anandarup Mukherjee, Chandana Roy, Sudip Misra," Introduction to Industrial Internet of Things and Industry 40", 1st Edition, CRC Press, 2020 2. Alasdair Gilchrist, "Industry 40: The Industrial Internet of Things", 1st Edition, Apress, New York, 2017 #### REFERENCES: 1. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", John Wiley& Sons publications, United Kingdom, 2013 2. Olivier Hersent, David Boswarthic &, Omar Elloumi, "The Internet of Things: Key Applications and Protocols", 2nd Edition, Wiley publication, New Jersey, 2012 #### **EVALUATION PATTERN:** | | Contin | uous Internal As | sessments | | | |---|-----------------|---|--|-------------------------------|--------------| | Assessment I
(100 Marks) | | Assessme
(100 Mar | NATURE STATE | VALIDO DO VEZTES DO MENT | End Semester | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | ividual priment / Written Test Assessment / Test | Total Internal
Assessments | Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | | 9.19 | | 40 | 60 | | | То | tal | 10 | 0 | | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided Course coordinator can choose any one / two components based on the nature of the course > Head of the Department Department of Mechatronics Engineering KPR Institute of Engineering and Technology Avinashi Road, Arasur, Coimbatore - 641407 Tamilnadu, India Department of Mechatronics Engineering PR matture of Engineering and Technology Avinashi Road, Arasur, Colmbatora - 641407 # DEPARTMENT OF MECHATRONICS ENGINEERING SEMESTER VI | Engine | No. | |-------------------|--------| | The second second | (PRIET | | Centre
Acade | | | Cour | ses | | | | | Cate | gory | OE | (0) | |----------|---------------------------------------|---|------|------|----|-----| | U21MIX07 | GRAPHICAL SYSTEM DESIGN USING LabVIEW | L | Т | P | J | С | | | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: Nil #### **COURSE OBJECTIVES:** - To learn the fundamentals of graphical programming techniques with instrument interfaces - To understand the data acquisition in real time systems - · To learn the various software and hardware tools for testing, measurement and control - To know the signal processing and analysis tool for industrial applications #### COURSE OUTCOMES: ## Upon completion of the course, the student will be able to CO1: Demonstrate the basic concepts of Virtual Instrumentation (Understand) CO2: Interpret the software tools in Virtual Instrumentation using GSD platform (Apply) CO3: Develop programming concepts in graphical programming environment (Apply) CO4: Interface data acquisition hardware with software tools (Apply) CO5: Develop programming concepts with advanced software tools (Apply) #### CO-PO MAPPING: | POs
COs | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|-------|-----|--------|---------|-----|------|--------|-------|-------|------|--------|---------|----------|------| | CO1 | 3 | 3 | 3 | 3 | 2 | - | - | | • | - | - | 2 | | | | CO2 | 3 | 3 | 3 | 3 | 2 | - | - | - | - | - | - | 2 | | | | CO3 | 3 | 3 | 3 | 3 | 2 | - | - | - | - | 2 | - | 2 | | | | CO4 | 3 | 3 | 3 | 3 | 2 | | - | - | - | - | - | 2 | | | | CO5 | 3 | 3 | 3 | 3 | 2 | - | - | - | - | | - | 2 | | | | Correlation | level | s: | 1: Sli | ght (Lo | ow) | 2: M | oderat | e (Me | dium) | 1 | 3: Sub | stantia | ıl (High | ij | ####
SYLLABUS: #### UNIT I INTRODUCTION TO GSD 9 Historical perspectives and architecture of a virtual instrument, Graphical System Design (GSD) - G programming/ modular programming - Controls and Indicators - Data flow programming using Numeric, String, Boolean functions - Data types - Editing, Debugging and Running a Virtual Instrument #### UNIT II GSD PROGRAMMING TECHNIQUES Graphical programming palettes and tools, Function and Libraries in GSD platform - String and File I/O: High level and Low-level file I/O's to Read / Write a file - Sub-VI programming, Structures: FOR Loops, WHILE loops, Shift Registers and CASE structures Head of the Department Department of Mechatronics Engineering KPR Institute of Engineering and Technology Avinashi Road, Arasur, Coimbatore - 641407 Tamilnadu, India #### UNIT III GSD SOFTWARE TOOLS Arrays and Clusters - Bundle/Unbundle and Bundle/Unbundle - Plotting data: waveform graphs and charts - Attribute nodes - Local and global variables - Formula nodes, Sequence structures and Timed looped structures ## UNIT IV GSD DATA ACQUISITION HARDWARE 9 Basics of DAQ hardware and software - concepts of data acquisition - Configuring and addressing the hardware - Real time data acquisition using Hardware: USB based DAQ with programming - Seven-Segment LED Display/ Motor/ Buzzer/ Speaker #### UNIT V SIGNAL PROCESSING AND CONTROL 9 Signal Processing and Analysis tool: Fourier transform, Power spectrum Analysis Communication protocol: TCP IP Client server Control Design and Simulation tool: Build basic transfer function for open and closed loop system with PID controller #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - - Periods Total 45 Periods #### **TEXTBOOKS:** Jeffery Travis and Jim Kring, "LabVIEW for Everyone: Graphical programming made easy and Fun", 3rd Edition, Pearson Education, India, 2009 2. Jovitha Jeroma, "Virtual Instruments using LabView", PHI Learning Pvt Ltd, New Delhi, 2010 #### REFERENCES: Gary W Jonson and Richard Jennings "Labview Graphical Programming", 4th Edition, McGraw Hill, New York, 2017 2. Gupta, Joseph and John, "Virtual Instrumentation using LabVIEW", 2nd Edition, Tata McGraw Hill, 2010 #### **EVALUATION PATTERN:** | | Contin | uous Internal As | sessments | | | | | |---|-----------------|---|-----------------|-------------------------------|--------------|--|--| | Assessment I
(100 Marks) | | Assessme
(100 Mar | | | End Semeste | | | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | Total Internal
Assessments | Examinations | | | | 40 | 60 | 40 | 60 | 200 | 100 | | | | | | | | 40 | 60 | | | | | То | tal . | 100 | | | | | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course coordinator can choose any one / two components based on the nature of the course. Head of the Department Department of Mechatronics Engineering KPR Institute of Engineering and Technology Avinashi Road, Arasur, Coimbatore - 641407 Tamilnadu, India Head of the Department Department of Mechatronics Engineering KPR Institute of Engineering and Technology Avinashi Road, Arasur, Colmbatore - 64 1407 Tamilinadu, India B.E. / B. Tech. - R2021 - CBCS #### **Open Elective** #### Semester VI | U21MAX02 | | Category: OEC | | | | | | | | | |----------|---|---------------|---|-----|---|---|--|--|--|--| | | LINEAR PROGRAMMING PROBLEMS (Common to all) | L | т | Р | J | С | | | | | | | | 3 | 0 | 0 , | 0 | 3 | | | | | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - To understand the basic concepts of resource management techniques - To solve problems in linear programming and Integer programming - To familiar with CPM and PERT #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Solve optimization problems using simplex method (Understand) CO2: Solve transportation and assignment problems (Understand) CO3: Apply integer programming and linear programming to solve real-life applications (Apply) CO4: Use mathematical software to solve the proposed models (Understand) CO5: Use PERT and CPM for problems in project management (Apply) #### CO-PO MAPPING: | POs
COs | P01 | PO2 | РО3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------------------------------|-----|-----|-----|----------------------|-----|-----|-----|-----|--------|---------|----------|------|------|------| | CO1 | 3 | 2 | - | - | 1 | * | - | • | • | | | 1 | | | | CO2 | 2 | 2 | 1 | - | 1 | - | - | • | %¥, | | | 1 | i | | | соз | 2 | 1 | 1 | - | 1 | - | - | - | | - | | 1 | | | | CO4 | 3 | 2 | 1 | - | 1 | - | - | - | - | | | 1 | | | | CO5 | 3 | 3 | 1 | - | 1 | | - | - | - | + | 184 | 1 | | | | Correlation levels: 1: Slight (Low) | | | | 2: Moderate (Medium) | | | | | 3: Sub | stantia | al (High | 1) | | | #### SYLLABUS: #### UNIT I LINEAR PROGRAMMING 9 Principal components of decision problem – Modeling phases – LP formulation and graphic solution – Resource allocation problems – Simplex method – Sensitivity analysis #### UNIT II DUALITY AND NETWORKS 9 Definition of dual problem – Primal – Dual relationships – Dual simplex methods – Post optimality analysis – Transportation and assignment model - Shortest route problem HOD-MATHS KPRIET-CBE. #### UNIT III INTEGER PROGRAMMING Cutting plan algorithm - Branch and bound methods, multistage (dynamic) programming #### UNIT IV CLASSICAL OPTIMIZATION THEORY 9 Unconstrained external problems, Newton Ralphson method – Equality constraints – Jacobean methods – Lagrangian method – Kuhn – Tucker conditions – Simple problems #### UNIT V OBJECT SCHEDULING 9 Network diagram representation - Critical path method - Time charts and resource levelling - PERT #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project - Periods Total: 45 Periods #### TEXT BOOKS: 1. Taha H A, "Operation Research", 10th edition, Pearson Education, 2019. 2. Grewal B A, "Higher Engineering Mathematics", Khanna Publishers, 44th edition, 2017. #### REFERENCES: Paneer Selvam, "Operations Research", 2nd edition, Pearson Education, 2016. 2. Anderson, "Quantitative Methods for Business", 8th edition, Thomson Learning, 2002. 3. Winston, "Operation Research", 4th edition, Brooks, 2003. 4. Vohra, "Quantitative Techniques in Management", 5th edition, Tata Mc Graw Hill, 2017. #### **EVALUATION PATTERN:** | | Contin | uous Internal As | sessments | | | | | |---|-----------------|--|---|-------------------------------|--------------|--|--| | Assessme
(100 Mari | | Assessme
(100 Mar | (Ma) 12 (1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | End Semeste | | | | Individual
Assignment /
Seminar / MCQ | Written
Test | Individual Assignment / Seminar / MCQ Written Test | | Total Internal
Assessments | Examinations | | | | 40 | 60 | 40 | 60 | 200 | 100 | | | | | To | otal | | 40 | 60 | | | | 4 | | | | 10 | 0 ; | | | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course. HOD-MATHS KPRIET-CBE. #### DEPARTMENT OF CHEMISTRY SEMESTER VI | U21CYX03 | | C | ateg | ory: | OEC | > | |----------|-----------------------------------|---|------|------|-----|---| | | INSTRUMENTAL ANALYSIS AND METHODS | L | Т | Р | J | C | | | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: NIL #### **COURSE OBJECTIVES:** - Gain knowledge of electromagnetic radiation, types of spectra, AAS and AES. - Understand basics of UV-Visible, Infra-Red spectroscopic techniques in the engineering field. - · Acquire knowledge of chromatography and thermal analysis techniques. #### **COURSE OUTCOMES:** #### Upon completion of the course, the student will be able to **CO1:** Apply the knowledge of the instrumentation, theory and application of atomic spectroscopic techniques. (Apply) CO2: Utilize the fundamental knowledge on the instrumentation and theory of UV-Visible spectroscopy. (Understand) CO3: Explain the importance of Infra-red spectroscopy and its applications. (Understand) **CO4:** Outline the various techniques involved in separation and purification using chromatographic techniques. (Understand) CO5: Discuss the theory, instrumentation and applications of TGA, DTA and DSC. (Understand) #### CO-PO MAPPING: | CO-FO MIAT | 1 1140 | - | | | | | | | | | | | | | |-------------|--------|-----|--------|---------|-----|------|--------|--------|-------|------|--------|---------|---------|------| | POs
COs | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | CO1 | 3 | 2 | 1 | - | _ | | 2 | - | - | | - | 1 | | | | CO2 | 3 | 2 | 1 | - | - | - | 2 | - | - | - | - | 1 | | | | CO3 | 3 | 2 | 1 | - | - | - | 2 | - | - | - | - | 1 | | | | CO4 | 3 | 2 | 1 | - | - | - | 2 | - | - | - | - | 1 | | | | CO5 | 3 | 2 | 1 | - | - | - | 2 | - | - | - | - | 1 | | | | Correlation | levels | 3: | 1: Sli | ght (Lo | ow) | 2: M | oderat | e (Med | dium) | | 3: Sub | stantia | l (High |) | #### **SYLLABUS:** #### UNIT I ATOMIC SPECTROSCOPY 8 Electromagnetic radiation – Characteristics of electromagnetic radiation, types of energy, representation of spectrum, types of spectra, differences between molecular and atomic spectrum. Atomic Absorption Spectroscopy (AAS) – Principle, instrumentation, applications, Atomic Emission Spectroscopy (AES) – Theory, flame photometry – Principle, instrumentation, applications Professor
& Head Department of Chemistry KPR Institute of Engineering and Technology Arasur, Coimbatore - 641 407. #### UNIT II **UV -VISIBLE SPECTROSCOPY** Introduction, characteristics of UV-Visible spectra, chromophore and auxochrome, electronic excitation - Intensity of bands - Selection rules - Laws of photometry - Correlation of electronic absorption with molecular structure - Conjugated systems - Systems of extended conjugation -Aromatic systems – Woodward – Fieser rules for dienes (butadiene) and α.β-unsaturated ketones #### IR - SPECTROSCOPY 11 Introduction, selection rules, molecular vibrations - Force constant - Band assignments, finger print region - Instrumentation - Applications - Interpretation of IR spectra in identification of common functional groups #### UNIT IV **CHROMATOGRAPHY** 10 Introduction, definition, principles of chromatography, sorption mechanisms - differential migration, partition and adsorption phenomena, classification of different chromatographic methods. Column chromatography: Principle, general aspects, chromatographic media, nature of forces between adsorbent and solutes, eluents, (mobile phase) and applications. Thin Layer Chromatography: Principle, chromatographic media-coating materials, applications, activation of adsorbent, sample development, solvent systems, development of chromatoplate, types of development, visualization methods, documentation, applications. Gas and High-Performance Liquid Chromatography: Theory, instrumentation and its applications. #### **UNIT V** THERMAL ANALYSIS TECHNIQUES Introduction - Thermo Gravimetric Analysis (TGA) - Principle, Instrumentation, Applications. thermal dehydration and decomposition of calcium oxalate - Differential Scanning Colorimetry (DSC) - Principle, Instrumentation, Applications, finger print of pure compound and phase transition - Differential Thermal Analysis (DTA) - Principle, Instrumentation, Applications. decomposition of calcium oxalate. #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** - 1. P. C. Jain, Monika Jain, "Engineering Chemistry", 1st Edition, Dhanpat Rai Publishing Company, Pvt. Ltd., 2015. - 2. P.S. Kalsi, "Spectroscopy of Organic Compounds", 6th Edition, New Age International Pvt. Ltd., 2007. #### REFERENCES: - William Kemp, "Organic Spectroscopy", 1st Edition, Macmillan, 1991. O.G. Palanna, "Engineering Chemistry", 2nd Edition, McGraw Hill Education India Pvt. Ltd., - S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", 2nd Edition, Wiley India Pvt. - 4. B.K. Sharma, "Instrumental methods of chemical analysis", 28th Edition, Goel Publishers, 2012. Dr M.S. KARTHIKEYAN Me Professor & Head Department of Chemistry KPR Institute of Engineering and Technology Arasur, Coimbatore - 641 407. #### **EVALUATION PATTERN:** | | Contin | uous Internal Ass | sessments | | | | |---|-----------------|---|-----------------|----------------------------|--------------|--| | Assessme
(100 Mark | | Assessme
(100 Mari | | 36 | End Semester | | | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | Written
Test | Total Internal Assessments | Examinations | | | 40 | 60 | 40 | 60 | 200 | 100 | | | | То | tal | 40 | 60 | | | | | | | | 10 | 0 | | ^{*}Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components basedon the nature of the course. Dr. M.S. KARTHIKEYAN Professor & Head Department of Chemistry KPR Institute of Engineering and Technology Arasur, Coimbatore - 641 407. #### DEPARTMENT OF CHEMISTRY SEMESTER VI | | | 0 | ateg | ory: | OEC | , | |----------|--------------------------------|---|------|------|-----|---| | U21CYX04 | OCCUPATIONAL HEALTH AND SAFETY | L | Т | P | J | С | | | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: Nil #### **COURSE OBJECTIVES:** - To have a thorough knowledge about various hazards and accidents involved in industries and the preventive methods. - To help students to understand broad aspects of safety management. - To enable the students to various fire prevention methods using modern techniques. #### **COURSE OUTCOMES:** #### Upon completion of the course, the student will be able to CO1: Predict the health impacts of various hazards at industries (Apply) CO2: Evaluate accident causation and prioritize mitigation measure (Analyze) CO3: Formulate occupational health and safety policies for work places (Analyze) CO4: Use the latest techniques and developments for personal protection (Apply) CO5: Employ the skills in fire prevention and control using modern techniques (Apply) #### CO-PO MAPPING: | Correlation | ı level: | s: | 1: Slig | ght (Lo | ow) | 2: M | oderat | e (Me | dium) | | 3: Sub | stantia | al (High | 1) | |-------------|----------|-----|---------|---------|-----|------|--------|-------|-------|------|--------|---------|----------|------| | CO5 | 1 | 1 | 3 | 1 | - | 3 | 3 | 1 | 1 | 1 | - | 3 | | | | CO4 | 1 | 1 | 3 | 1 | - | 3 | 3 | 1 | 1 | 1 | - | 3 | | | | CO3 | 1 | 1 | 3 | 1 | - | 3 | 3 | 1 | 1 | 1 | - | 3 | | | | CO2 | 1 | 1 | 3 | 1 | - | 3 | 3 | 1 | 1 | 1 | - | 3 | | | | CO1 | 1 | 1 | 3 | 1 | - | 3 | 3 | 1 | 1 | 1 | - | 3 | | | | POs
COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | #### **SYLLABUS:** #### UNIT I OCCUPATIONAL HAZARDS 9 Classification of occupational health hazards – Dangerous properties and health effects of chemical, biological, electrical and radiation hazards; Health Considerations at work place – Occupational diseases due to metals and dusts, fumes and chemical compounds. Professor & Head Department of Chemistry KPR Institute of Engineering and Technology. Arasur. Coimbatore - 641 407. #### UNIT II **ACCIDENT CAUSES, PREVENTION AND SAFETY MANAGEMENT** Accident prevention - Causation, accident problem, reasons for prevention, factors impending safety; Concept of management - Element of management, functions, management principles, safety management and its responsibilities; Role of National Governments & International bodies in Health & Safety; Legal Aspects of Safety - Indian Acts and various International Acts. Case studies on accidents happened in Industries: Indian scenario #### **UNIT III** OCCUPATIONAL SAFETY 9 Analyze workplaces to identify occupational hazards - Structural hazards - Building and hazard identification; risk reduction measures for building; checklist for evaluation; Different mechanical hazards; Human factors and Ergonomic fitness for duty - Human environment system, training, task analysis, ergonomic considerations, recognizing potential ergonomic problems. #### **UNIT IV** PERSONAL PROTECTIVE EQUIPMENT STANDARDS Introduction, requirements of PPE - Head protection, eye & face protection, body protection, hand protection, foot protection; Respiratory protective equipment - Fit testing; Fall protection - Working over or near water; Personal protection against shock; The First Aid & Emergency procedure -CPR. #### **FIRE PREVENTION & CONTROL UNIT V** Classification and General Causes of fire - Detection of fire - Extinguishing methods - First aid firefighting equipments - Portable extinguisher - Construction - Operation - Maintenance -Refilling and fire protection; Hydrant system - Classification of hydrant system; Complete CO2 flooding system – Complete DCP spraying system – Complete Halon flooding system Case studies on fire accidents happened in Industries: Indian scenario #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - Periods Total: 45 Periods #### **TEXT BOOKS:** S.K. Haldar, "Industrial and Occupational Health", 2nd Edition, CBS Publishers, 2023 #### REFERENCES: - 1. Thomas J Anton, "Occupational Safety & Health Management", 2nd Edition, New York: McGraw-Hill Book, 1989 - 2. W David Yates, "Safety Professional's reference & study guide", 3rd Edition, CRC Press, 2020 - 3. Daniel Limmer, Michael Grill, "Fire Service First Responder", 1st Edition, Pearson, 1999 - 4. Dennis. P. Nolan, "Hand book of fire and Explosion Protection Engineering Principles for Oil-Gas - Chemical and Related Facilities", 4th Edition, Gulf Professional Publishing, 2018 - 5. L.M Deshmukh, "Industrial Safety Management: Hazard Identification and Risk Control", 1st Edition, McGraw Hill Education (India) Private Limited, 2005 - Louis Gonzales, Michael W. Lynch, Sue Bork, "Heart saver First Aid CPR AED Student Book", 1st Edition, American Heart Association, 2015 MUS Dr. M.S. KARTHIKEYAN Professor & Head Department of Chemistry KPR Institute of Engineering and Technology Arasur, Coimbatore - 641 407. #### B.E / B.Tech - OE- R2021- CBCS #### **EVALUATION PATTERN:** | | nents | uous Internal Ass | Contin | | | | | |---|-------|--|-----------------|---|--|--|--| | | | Assessment I Assessment II (100 Marks) (100 Marks) | | | | | | | Individual ssignment / asse Study / Seminar / oject / MCQ | | | Written
Test | *Individual
Assignment /
Case Study /
Seminar /
Project / MCQ | | | | | :00 | 60 | 40 | 60 | 40 | | | | | 40 | | tai | To | | | | | | 1 | | | | | | | | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components basedon the nature of the course. Dr. M.S. KARTHIKEYAN Professor & Head Department of Chemistry KPR Institute of Engineering and Technology Arasur,
Coimbatore - 641 407. #### SEMESTER VI | | | | Cate | gory: | OE | 3 | |----------|---------------------|---|------|-------|----|---| | U21GEX01 | DIGITAL ENGINEERING | L | Т | P | J | С | | | | 3 | 0 | 0 | 0 | 3 | #### PRE-REQUISITES: Nil #### COURSE OBJECTIVES: - . To study and design emerging technologies for industrial applications - To understand the concepts of edge, IoT, Cybersecurity, AI/ML and BDA to solve real-world applications #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Understand the basics of emerging technologies (Understand) CO2: Create job-ready talent for the ER&D Industry (Apply) CO3: Describe all algorithms and represent it (Understand CO4: Design a real-world industry application (Apply) CO5: Analyse all the algorithm and evaluate their performance (Apply) #### **CO-PO MAPPING** | POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|--------|-----|--------|---------|-----|------|--------|-------|-------|-------------|--------|---------|----------|------| | CO1 | 3 | 2 | • | - | - | | - | W#: | • | 1 €3 | T. | 1 | | | | CO2 | 3 | 2 | *. | - | | - | (- | - | - | | | *(| | | | СОЗ | 3 | 2 | | - | - | - | - | - | - | 11: | | - | - | | | CO4 | 3 | 2 | • | - | | - | - | * | ==0 | 85.0 | - | 1 | | | | CO5 | 3 | 2 | | | | - | - | | - | | • | 1 | | | | Correlation | levels | s: | 1: Sli | ght (Lo | w) | 2: M | oderat | e (Me | dium) | 3 | 3: Sub | stantia | ıl (High |) | #### SYLLABUS: #### UNIT I EDGE COMPUTING 14 IoT Edge Computing Solutions – Edge Security – Edge Protocols – IoT Edge Computing Architecture – Enterprise Edge (Edge Computing in Enterprises) – Edge Analytics – Deployment of Edge Microservices – Edge Event-Driven Data Management – Building Edge Microservices – Introduction to Edge – Microservices-Building an Edge Network for Microservices Architectures – Building a Hybrid Edge Network – Securing your Edge Network Traffic – Scaling your Edge Network Design Building an Edge to Cloud and Cloud to Edge Network – Edge 2 Edge & Edge 2 Cloud Networking and Communication – NFV and end-to-end service orchestration in Edge Computing – IEEE Standards for Software Engineering-Developing Software for Edge Computing Applications – Requirement Engineering for Edge Computing – Develop Edge Computing Applications – Create Your First Prototype – Edge Services Discovery-Consumer IoT Use Cases – Building Edge Content Delivery Networks Head of the Department Department of Computer Science and Engineering KPR Institute of Engineering and Technology Coimbatons - 641 407 #### UNIT II INTERNET OF THINGS 8 IoT - Interfacing with Hardware - Internet of Things (IOT) Overview - IoT Application Platform - Enterprise IoT adoption in Businesses-Connected Car - IoT Reference Architecture - IoT in Retail - Introduction to LoRaWAN - IoT Analytics - Enterprise IoT Implementation Questionnaire (IoT is new IT for Enterprises) - IoT Sensors and Device Layer #### UNIT III CYBERSECURITY 8 Important aspects of IoT Security – IoT Cloud & App security – IoT Endpoint Security – OT Security – Introduction – Vulnerability assessment and Penetration Testing-Introduction to Cyber Security – Intrusion Detection System – An Introduction to Hardware Security – An Introduction to Data Security – Introduction to IoT Security – OT Security Risk Assessment – OT Security Risks #### UNIT IV ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 10 Introduction – Dimensionality Reduction – Introduction to Text Analytics – Introduction to Text Analytics – Machine Learning Clustering – Regression in Al/ML-Classification in Al/ML – Exploratory Data Analysis – Sampling and Hypothesis Testing – Deploying and Managing Al Applications – Introduction to Deep Learning-Introduction to Data Science – Data Analytics – Types of Distributions, Data Types, and EDA – Fundamentals of Deep Learning – Basic Statistics Probability and Linear Algebra #### UNIT V BIG DATA ANALYTICS 5 Basics of Big Data-Big Data: ELT Fundamental Components – Big Data Security Fundamentals – Data Engineering – Processing, Storage, and Capacity Planning – Data Types and NoSQL DB Architecture #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project: - F - Periods Total 45 Periods #### **TEXT BOOKS:** William J. Dally, John W. Poulton, "Digital Systems Engineering", Cambridge University Press, Third Edition, 2018 #### REFERENCES: 1. G. K. Kostopoulos, "Digital Engineering", CRC Press, 2008 #### **EVALUATION PATTERN:** | | Contin | uous Internal Ass | sessments | | | |--|-----------------|--|-----------------|-------------------------------|--------------| | Assessme
(100 Mark | 7027572711 | | End Semester | | | | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Written
Test | *Individual
Assignment /
Case Study /
Seminar / Mini
Project / MCQ | Written
Test | Total Internal
Assessments | Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | То | tal | | 40 | 60 | | | | | [| 10 | 0 | ^{*}Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course. Head of the Department Department of Computer Science and Engineering KPR Institute of Engineering and Technology Compators - 841 407 ## DEPARTMENT OF MECHATRONICS ENGINEERING #### SEMESTER VI U21GEX05 INDUSTRIAL PROCESS AUTOMATION AND ARTIFICIAL INTELLIGENCE (Open Elective - Chemical/CSE/IT/CSE-AIML, ECE/EEE) | | Cate | gory: | ØEC | Category: ØEC | | | | | | | | | | |---|------|-------|-----|---------------|--|--|--|--|--|--|--|--|--| | L | Т | Р | J | С | | | | | | | | | | | 3 | 0 | 0 | 0 | 3 | | | | | | | | | | Institute Centre for Academic Courses #### PRE-REQUISITES: NIL #### **COURSE OBJECTIVES:** - To understand the basics of transmitters, actuators and control system - To apply and analyse the various design inputs - To understand the hardware & software configuration of a control system - To provide an exposure to the various processes and control application examples - To understand the role of Al in process automation #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Identify the different types of actuators and understand the basics of PLC (Understand) CO2: Apply the design input and develop control system engineering documents (Apply) CO3: Implement the hardware & software configurations for a control system (Apply) CO4: Understand and apply the concepts of various control applications implemented in process plant controls (Apply) CO5: Understand and apply the role of AI in process automation (Apply) #### CO-PO MAPPING: | POs
COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|-------|-----|--------|---------|-----|------|--------|-------|-------|------|-------|---------|----------|------| | CO1 | 3 | - | 2 | - | 2 | - | _ | _ | - | _ | | 2 | | | | CO2 | 3 | 3 | 2 | - | 2 | _ | - | _ | - | - | _ | 2 | | | | CO3 | 3 | 2 | 2 | - | 3 | _ | - | - | - | - | _ | 2 | | | | CO4 | 3 | 2 | 2 | - | 3 | - | _ | - | _ | _ | _ | 2 | | | | CO5 | 3 | 2 | 2 | _ | 2 | - | - | - | - | - | _ | 2 | | | | Correlation | level | s: | 1: Sli | ght (Lo | ow) | 2: M | oderat | e (Me | dium) | | 3: Su | bstanti | al (High |) | #### SYLLABUS: #### UNIT I INTRODUCTION 9 Pneumatic, Hydraulic & Electrical Actuators, Alarm Annunciators – Brief introduction to control systems: PLC & SCADA ## UNIT II CONTROL SYSTEM DOCUMENTATION 9 Importance of Documentation: Preparing Instrumentation Index, I/O list, PFD, P&ID, Loop diagrams, Interconnecting diagrams, H/W Engineering drawings - Control room layout, Panel layout & GA, Grounding system drawing - Control system documentation: System Architecture / Network diagram, Comm protocols, FDS/FS for configuration, installation, backup, change control/modification management, maintenance & Operation Head of the Department Department of Mechatronics Engineering KPR Institute of Engineering and Technology Avinashi Road, Arasur, Coimbatore - 641407 Tamilnadu, India 9 Function of Control system: HMI, Visualization & Control, Application development, Trending & Process alarming, Reports – Hardware & Software, Redundancy, Multi-system integration, RTUs., Fieldbus, Multiplexer ## UNIT IV INTRODUCTION TO PROCESS PLANT APPLICATIONS 9 Brief introduction to various process & control application examples: Batch processes and their Automation, Blending and Ratio Controls, Boiler Control (3 element control), Liquid Analysers (pH, ORP, Conductivity) – Additional Processes: Compressor Controls and Optimization, Distillation: Basic Controls, Evaporator Controls, Rolling Mill Controls, Water treatment Controls #### UNIT V ROLE OF AI - FUTURE OF PROCESS AUTOMATION g Brief introduction to various process & control application examples: The Impact of AI on Industrial Automation (Objective coverage), AI-Powered Predictive Maintenance (APM), Digital Twins in Automation (Simulation, AR and VR), AI and Smart Factories (Industry 4.0), Advanced Process Control with AI (APC), AI for Sustainable and Green Manufacturing (Energy Efficiency - Optimax etc.), AI Vision for Quality Assurance, AI for Automation Engineering #### **Contact Periods:** Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project - Periods Total 45 Periods #### **TEXTBOOKS:** - 1. Frank D. Petruzella, "Programmable Logic Controllers", 6th Edition, McGraw Hill, 2023 - 2. B.R.Mehta, Y. Jaganmohan Reddy, "Industrial Process Automation: Design and Implementation", 1st Edition, Butterworth-Heinemann, 2014 #### **REFERENCES:** - 1. Bela G. Liptak, "Measurement and Analysis", Volume
I, 4th Edition, CRC Press, 2006 - 2. Bela G. Liptak, "Process Control and Optimization", Volume II, 4th Edition, CRC Press, 2006 - 3. Bela G. Liptak, "Process Software and Digital Networks", Volume III, 4th Edition, CRC Press, 2006 #### **EVALUATION PATTERN:** | | Contir | uous Internal As | sessments | | | |---|-----------------|---|-----------------|-------------------------------|------------------------------| | Assessme
(100 Mark | | Assessme
(100 Mar | | | | | Individual
Assignment /
Seminar / MCQ | Written
Test | Individual
Assignment /
Seminar / MCQ | Written
Test | Total Internal
Assessments | End Semester
Examinations | | 40 | 60 | 40 | 60 | 200 | 100 | | | To | otal | | 40 | 60 | | | | | | 10 | 0 | *Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course. Head of the Department Department of Mechatronics Engineering KPR Institute of Engineering and Technology Avinashi Road, Arasur, Coimbatore - 641407 Tamilnadu, India ## DEPARTMENT OF ENGLISH | U21FLX01 | |----------| |----------| ## ESSENTIAL JAPANESE FOR ENGINEERS (Common to all Branch) | 1 | Category: OEC | | | | | | | | | | |---|---------------|---|---|---|--|--|--|--|--|--| | L | Ţ | Р | J | С | | | | | | | | 2 | 0 | 2 | 0 | 3 | | | | | | | #### PRE-REQUISITES: NIL #### COURSE OBJECTIVES: - To train the students to learn basic Japanese including three writing systems - To teach them to learn basic grammar and vocabulary - To train them to converse in Japanese in day-to-day scenarios #### COURSE OUTCOMES: Upon completion of the course, the student will be able to CO1: Acquire familiarity in all 3 Japanese alphabet & basic vocabulary (Understand) CO2: Listen and identify individual sounds of Japanese (Understand) CO3: Use basic sounds and words while speaking (Apply) CO4: Read and understand simple advertisements, brochures and invitations (Apply) CO5: Use basic grammar and appropriate vocabulary in completing language tasks (Apply) #### CO-PO MAPPING: | POs
COs | PQ1 | PO2 | РО3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | P\$01 | PSO2 | |------------|-----|-----|-----|-----|-----|-----|-----|------|-----|------|-------|------|---------|------| | CO1 | _ | _ | _ | - | _ | _ | _ | 3 | - | 2 | | _ | • | | | CO2 | _ | _ | - | - | _ | - | - | - | 2 | 3 | - | - | | | | CO3 | i – | _ | | _ | - | _ | - | _ | - | 3 | _ | _ | | | | CO4 | - | _ | _ | - | - | - | - | _ | 2 | 3 | _ | 1 | | | | CO5 | _ | - | - | _ | - | - | _ | 2 | _ | 3 | _ | 1 | | | | | | | | | | | | 78.8 | 0 | | 0.0.0 | | 1711:-6 | \ | Correlation levels: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) #### SYLLABUS: #### UNIT I INTRODUCTION TO JAPANESE 6+6 Japanese written system –Japanese sounds – Hiragana (あ、い、う、え、お...) – Hiragana variations – Katakana – Katakana variations #### UNIT II MYSELF 6+6 Countries – Languages – Occupations – Self-introduction – Family – People – Numbers – My family–wa...desu – mo particle – to particle – ni particle – no particle. #### UNIT III FOOD 6+6 Food - Drinks - 7 Kanji - Food for lunch - Eating places - ga suki desu - sukijanai - o particle - de particle - My breakfast - My lunch 6+6 HOME **UNIT IV** Home - Furniture - 4 kanjis - Places to visit nearby - Rooms - Things in the room - ni + ga + arimasu - ni + ga + imasu- general counter - My home - My room. UNIT V **DAILY LIFE** 6+6 Daily routines - Time - 10 kanjis - Free-time activities - Places - Calendar - telling time -ni particlekara... made... - time expression - ii adjective Lecture: 30 Periods Tutorial: - Periods Practical: 30 Periods Project - Periods Total: 60 Periods #### **TEXTBOOKS:** 1. 独立行政法人国際交流基金, 来嶋, 柴原 & 八田. Marugoto: Japanese Language and Culture Starter A1 Coursebook for Communicative Language Competences / まるごと 日本のことばと文 化 入門 A1 りかい 2023. #### **EVALUATION PATTERN:** | Co | ontinuous | Internal Assessments | End Semester Examinations | | |---|-----------|---|---------------------------|---| | Assessme
(Theory
(100 Mar | y) | Assessmer
(Practical
(100 Mark |) | | | Individual
Assignment / Written
Seminar / Test
MCQ | | Evaluation of
Laboratory
Observation,
(Rubrics Based
Assessments) | Test | Practical Examinations
(Examinations will be conducted for
100 Marks) | | 40 | 60 | 75 | 25 | | | 25 | | 25 | | 50 | | | | 50 | | 50 | | | | | Total: 100 | | Dr. T. JAYASUDHA Asst. Prof. & Head Department of English KPR Institute of Engg. & Technology Coimbatore - 641 407 #### **DEPARTMENT OF ENGLISH** | | | | Cate | gory: | OEC | i
† | |----------|--|---|------|-------|-----|--------| | U21FLX02 | ESSENTIAL HINDI FOR ENGINEERS (Common to all Branch) | L | Т | Р | J | С | | | (common to an Dianon) | 2 | 0 | 2 | 0 | 3 | #### PRE-REQUISITES: · . NIL #### **COURSE OBJECTIVES:** - · To train the students to learn basic Hindi - To teach them to learn basic grammar and vocabulary - To train them to converse in Hindi in day-to-day scenarios #### **COURSE OUTCOMES:** Upon completion of the course, the student will be able to CO1: Acquire familiarity in the Hindi alphabet & basic vocabulary (Understand) CO2: Listen and identify individual sounds of Hindi (Understand) CO3: Use basic sounds and words while speaking (Apply) CO4: Read and understand simple advertisements, brochures and invitations (Apply) CO5: Use basic grammar and appropriate vocabulary in completing language tasks (Apply) #### CO-PO MAPPING: | POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |------------|--------|-----|---------|---------|-----|------|--------|--------|-------|------|--------|---------|-----------|------| | CO1 | - | - | - | | - | - | _ | 3 | - | 2 | - | - | | | | CO2 | - | | - | - | _ | - | - | - | 2 | 3 | _ | _ | | | | CO3 | - | - | - | - | - | - | - | _ | _ | 3 | _ | | | | | CO4 | - | - | _ | _ | - | - | - | - | 2 | 3 | _ | 1 | | | | CO5 | - | - | - | - | - | _ | | 2 | - | 3 | _ | 1 | | | | Correlatio | n leve | ls: | 1: Slig | ght (Lo | ow) | 2: M | oderat | e (Med | dium) | | 3: Sub | stantia | ıl (High) | | #### SYLLABUS: #### UNIT I BASICS OF HINDI LANGUAGE 6+6 Hindi Alphabet – Vowels (स्वर) – Consonants (व्यंजन) – Matras (मात्राएँ) – Word Formation – Basic Sentence Structure – Common Greetings –Simple Questions and Answers #### UNIT II VOCABULARY & GRAMMAR 6+6 Common Nouns (संज्ञा) – Pronouns (सवर्नाम) – Verbs – Adjectives – Numbers (संख्याएँ) – Days of the Week – Months – Gender –Singular/Plural (वचन) #### UNIT III READING AND WRITING SKILLS 6+6 Reading Short Passages – Understanding Meanings – Paragraph Writing – Letter Writing (Informal Letters) – Basic Grammar Rules –Simple Essay Writing – Filling Blanks in Sentences #### **UNIT IV** LITERATURE AND TEXT STUDY 6+6 Selected Poems (कविताएँ) - Stories (कहानियाँ) - Understanding Themes and Morals - Introduction to Hindi Authors - Word-to-Word Translation -Summarizing Texts #### UNIT V READING AND WRITING SKILLS 6+6 Basic Conversations - Listening Comprehension - Oral Reading Practice - Pronunciation Drills -Memorizing and Reciting Poems - Roleplay in Everyday Situations - Short Speeches #### **Contact Periods:** Lecture: 30 Periods Tutorial: - Periods Practical: 30 Periods Project -- Periods Total: 60 Periods #### **TEXTBOOKS:** 1. Dakshin Bharat Hindi Prachar Sabha. (n.d.). Prathamik Hindi Textbook. Chennai, India: Dakshin Bharat Hindi Prachar Sabha Publications. #### **EVALUATION PATTERN:** | End Semester Examinations | Continuous Internal Assessments | | | | | | | |---|---|---|----|--|--|--|--| | | Assessment I Assessment II (Theory) (Practical) (100 Marks) (100 Marks) | | | | | | | | Practical Examinations
(Examinations will be conducted for
100 Marks) | Test | Evaluation of Laboratory Observation, (Rubrics Based Assessments) | | Individual Assignment / Seminar / MCQ Written Test | | | | | | 25 | 75 | 60 | 40 | | | | | 50 | 25 25 | | | | | | | | 50 | 50 | | | | | | | | | Total: 100 | | | | | | | Dr. T. JAYASUDHA Asst Prof. & Head Department of English KPR Institute of Engg. & Technology Coimbatore - 641 407 #### **DEPARTMENT OF ENGLISH** | | | | Cate | gory: | OEC | , | |----------|---|---|------|-------|-----|---| | U21FLX03 | ESSENTIAL GERMAN FOR ENGINEERS (Common to all Branch) | L | T | Р | J | С | | · I | (Common to an Dranon) | 2 | 0 | 2 | 0 | 3 | #### PRE-REQUISITES: NIL #### **COURSE OBJECTIVES:** - To train the students to learn basic German - · To teach them to learn basic grammar and vocabulary - To train them to converse in German in day-to-day scenarios #### **COURSE OUTCOMES:** #### Upon completion of the course, the student will be able to CO1: Acquire familiarity in the German alphabet & basic vocabulary (Understand) CO2: Listen and identify individual sounds of German (Understand) CO3: Use basic sounds and words while speaking (Apply) CO4: Read and understand simple advertisements, brochures and invitations (Apply) CO5: Use basic grammar and appropriate vocabulary in completing language tasks (Apply) #### CO-PO MAPPING: | POs
COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PQ11 | PO12 | PSO1 | PSO2 | |------------|--------|-----|---------|---------|-----|-------
--------|--------|-------|------|--------|---------|-----------|------| | CO1 | | - | _ | - | - | _ | - | 3 | _ | 2 | _ | _ | | | | CO2 | _ | - | - | - | - | - | - | - | 2 | 3 | _ | - | | | | CO3 | _ | - | _ | _ | _ | - | | _ | _ | 3 | - | _ | | | | CO4 | _ | _ | _ | | | - | _ | | 2 | 3 | _ | 1 | | | | CO5 | _ | - | _ | _ | _ | _ | - | 2 | _ | 3 | _ | 1 | | | | Correlatio | n leve | ls: | 1: Slig | ght (Lo | ow) | 2: Mo | oderat | e (Med | dium) | | 3: Sub | stantia | ıl (High) | 1 | #### SYLLABUS: #### UNIT I INTRODUCTION TO GERMAN SOUNDS AND BASIC WORDS 6+6 Die Satzmelodie – Das Alphabet – Die Laute sch [S] und sp [Sp] – Diphthonge: ei [ai] – Begrüßen – Sich und andere vorstellen – Buchstabieren – Zählen #### UNIT II FAMILY 6+6 Angaben zur Person: Name, Alter, Familie – Länder – Städte – Berufe –Sprachen –Hobbys – Zahlen Personalpronomen und Verben im Präsens –Personalpronomen – Aussagesätze – Fragesätze – Bestimmter Artikel – Possessivartikel ## UNIT III FIRST CONVERSATION AT WORKPLACE 6+6 Gespräche mit Kollegen – Die Büroeinrichtung und die Abteilungen beschreiben – Nach Preisen fragen – Über Freizeitaktivitäten sprechen –Nomengruppe im Nominativ: bestimmter und unbestimmter Artikel #### UNIT IV TRAVEL 6+6 Ein Hotelzimmer reservieren – Sich im Hotel anmelden – Probleme im Hotelzimmer benennen – Sich in einer Stadt orientieren – Informationen über Museen erfragen (Öffnungszeiten/Eintrittspreise) – Nomengruppe im Akkusativ – Komposita - Verben im Präsens – Verben mit Akkusativ – Modalverb: möchte(n) – Temporale und lokale Präpositionen ## UNIT V FOOD AND DRINK 6+6 Essen und Trinken bestellen – Nahrungsmittel einkaufen – Einfache Rezepte lesen Informationen über Essgewohnheiten geben und erfragen – Nomengruppe im Akkusativ – Plural der Nomen – Modalverb: mögen – Präteritum von sein und haben – Personalpronomen im Akkusativ ## **Contact Periods:** Lecture: 30 Periods Tutorial: - Periods Practical: 30 Periods Project - Periods Total: 60 Periods #### **TEXTBOOKS:** - Buscha, A., & Szita, S. (n.d.). Begegnungen Deutsch als Fremdsprache A1+: Integriertes Kursund Arbeitsbuch 2021. - 2. Brüseke, R. (2019). Grammatik leicht A1. #### **EVALUATION PATTERN:** | C | ontinuous | Internal Assessment | End Semester Examinations | | | | | |--|------------------------|------------------------------------|---------------------------|---|--|--|--| | Assessm
(Theor | ry) | Assessme
(Practica
(100 Mart | al) | | | | | | Individual
Assignment /
Seminar /
MCQ | t / Written Laboratory | | Test | Practical Examinations
(Examinations will be conducted for
100 Marks) | | | | | 40 | 60 | 75 | 25 | | | | | | 25 | | 25 | 50 | | | | | | | | 50 | 50 | | | | | | | | | Fotal: 100 | 1 | | | | Dr. T. JAYASUDHA Asst. Prof. & Head Department of English KPR Institute of Engg. & Technology Coimbatore - 641 407 ## KPR Institute of Engineering and Technology Learn Beyond (Autonomous, NAAC "A") 0422 2635600, +91 75488 88444 admission@kpriet.ac.in Avinashi Road, Arasur, Coimbatore - 641407